Security Properties and Java Card Specificities
To Be Studied in the SecSafe Project

Date: 2001/08/23 08:40:24 (UTC)

Authors: Renaud Marlet, Daniel Le Btayer (Trusted Logic)
Classification: Public

Number: SECSAFE-TL-006

Version: 1.2

Status: Stable

Abstract. This report describes security properties to be studied in the SecSafe project. These
properties are to be checked by static analyses. The current version of the document only contains a
first set of properties; this set will be refined and expanded in the course of the project.

The document also highlights characteristics of Java Card applets that make some analyses par-
ticular, even though the corresponding property can be “classic”. These specificities originate from
the Java Card language and runtime environment as well as from the nature and programming style of
typical applications.

Contents
1 Introduction 2

2 Java Card Specificities 2

2.1 AppletLifetime . . . . . . . . 2
2.2 Entry Points, Reset and Default Applet Selection . . . .. .. ... ......... 3
2.3 Persistence . . . . ... 3
2.4 AtOmICIty . . . . . e 4
25 Memory Management. . . . . . . ... e 4
2.6 Firewall: Object Creationand Access . . . . . . . . . . v i v i v .. 5
2.7 Useof Arrays . . . . . . . e 5
2.8 SilentOverflow . . . . . . . . 5
29 ControlFlow . . . . . . . . e 6

3 Security Properties 6
3.1 Memory Allocation Control . . . . . . . . ... 6
3.2 Information Flow Control . . . . . . . . . . . . ... . 7
3.3 ServiceControl . . . . . ... 8
3.4 ErrorPrediction . . . . . ... e 9
3.5 AtomicUpdates . . . . . . . .. 11
3.6 Overflow Control . . . . . . . .. . 12
3.7 Manipulation of PlaintextSecret . . . . . . . .. . ... ... 12

4 What Analyses? 14

References 14



2 2 JAVA CARD SPECIFICITIES

1 Introduction

This report describes security properties to be studied in the SecSafe project. The set of properties
described here is not definitive nor exhaustive; it will be refined and expanded in the course of the
project.

Security properties of interest for the SecSafe project have been determined based on Trusted
Logic’s experience in security issues and applet development, using the following criteria.

e The security issues that are addressed by the properties are relevant for the typical Java Card
domains (banking, GSM, etc.).

e The properties are either original or involve specific treatments due to the Java Card language
and runtime environment as well as the nature and programming style of applications in the
domain. This contributes to the novelty of the research carried out in the project.

e The properties are challenging: there is no obvious (good) solution. Analyses that efficiently
and accurately check these properties are not available off-the-shelves.

e \We focus for the moment on properties concerning a single applet, only communicating using
APDUs. This corresponds to the present state of the market of Java Card applets. Properties
concerning applets communicating via shareable interface objects will be studied later.

The document is organized as follows. Section 2 recalls notable specificities of the Java Card language
as well as Java Card applications. This is important as some standard properties become harder in the
context of Java Card. Section 3 defines and illustrates properties of interest, targeted at security.
Section 4 concludes on the precision, usability and assessment of analyses that are to check these
properties.

2 Java Card Specificities

Before describing security properties, we recall in this section what makes Java Card applications
original, compared to other IT applications. This specificity not only stems from the programming
language and runtime environment but also from the scarce resources (little memory), security con-
cerns, application nature, programming style, etc.

2.1 Applet Lifetime

A Java Card applet goes into different logical stages.
e Loading:the code of the application is downloaded onto the card.

¢ Installation: an applet instance is created and registered. Several instances of the same applet
may coexist.

e Personalization:a registered applet instance receives personalization data and initializes. An
applet is personalized only once, and only then becomes operational. Note however that there is
no explicit support in the system concerning personalization. Although it is a standard logical
phase in the life of an applet, it has to be implemented explicitly by the programmer. In par-
ticular, there is nothing in the system to prevent re-personalization or use of an un-personalized
(hence not operational) applet; it is up to the programmer to set up an explicit flag.

e Processing:a registered, operational applet is selected, receives several commands (and per-
forms them), and is deselected. This can be repeated.



2.2  Entry Points, Reset and Default Applet Selection 3

In addition, at any point during processing, the power camesetand the processing stage stops.
However, new processing phases can be performed afterwards when power is up again. As loading,
installation and personalization are performed in a secure environment, it is enough to consider that
reset can only happen during processing.

Packages and applet instances can be deleted. If not, their lifetime is that of the JCVM running on
the card. (In some circumstances, the JCVM may stop forever.)

All properties must be true for the whole applet lifetime, or part of it (e.g., after personalization).
An analysis verifying these properties must thus take into account all the above stages.

2.2 Entry Points, Reset and Default Applet Selection

Contrary to ordinary programs that have a single “main()” entry point, Java Card applets have several
entry points, that are called when the card receives various APDU commands. These entry points
roughly match the above lifetime stages. They correspond to the following methods (see class javac-
ard.framework.Applet and interface org.globalplatform.Application):

e install() is called to instantiate and register a new applet. The system guarantees that any se-
lectable applet has been created by the JCRE calling the install() method. Note that install() is
a static (class) method, as opposed to the following instance methods.

e processData() is called to provide personalization data to a registered applet (OP 2.1 implemen-
tations only, see command STORE DATA). It is usually called once, sometimes a few times,
and only for personalization. However, this calling pattern is not guaranteed by the system:
processData() can be called at any time, any number of times.

e select() is called on an unselected applet, to select it. The system guarantees that the currently
selected applet is deselected — method deselect() is then invoked — before a new applet selec-
tion.

e process() is called on a selected applet (including when a SELECT APDU is received, but after
the invocation of the select() method). This command is typically called several times before
the applet is deselected.

e deselect() is called on a selected applet, to deselect it. The system guarantees that the currently
selected applet is deselected before a new applet selection.

In addition, as noted in the preceding sectiomesetmay occur at any time, interrupting and termi-
nating the current computation. In general, after a reset, no applet is considered selected. In some
cases though, an applet may be selected by default. In this case, its select() method is called but the
process() method is not called as there is no SELECT APDU to treat.

All the above methods are called by the JCRE when receiving the corresponding APDU com-
mands. However, note that nothing prevents an applet from explicitly calling the above methods. It
will have no impact on the internal state though. In particular, calling install() and attempting to reg-
ister an applet instance will fail. Likewise, calling select() or deselect() will have no impact on the
currently selected applet. Note that public methods of an applet can be also called by another applet
via a shareable interface object or via the JCRE calling the method getShareablelnterfaceObject().

2.3 Persistence

There are five persistence / volatility levels for data areas on a card:

e Persistent class data area®rrespond to static fields. They are made available when a class is
loaded onto the card. They live until the package of the class is possibly deleted from the card.



4 2 JAVA CARD SPECIFICITIES

e Persistent instance data areasrrespond to instance fields (of the applet instance as well of
objects allocated by the applet) as well as arrays. They are made available when an applet
instance is installed, possibly creating other objects and arrays. They live until the applet is
possibly deleted from the card.

e Card session data areasorrespond to CLEARON_RESET transient arrays. They are made
available only during a card session, i.e., between a power up and a power down of the card. On
a power up, such arrays contain a null or zero value (depending on their type).

e Applet session data area®rrespond to CLEARON_DESELECT transient arrays. They are
made available only during an applet session, i.e., between a selection and a deselection of an
applet instance. On a selection, such arrays contain a null or zero value (depending on their
type); they are cleared on a deselection.

e Method invocation data arearrespond to local variables (present on the method invocation
frame). They are available only as long as a method is being exécuted

In the event of a reset (which can occur at any time), only persistent data areas are preserved (see
section “Atomicity” just below though); data in other areas are lost.

2.4 Atomicity

Writing persistent data can be performed atomically, i.e., without being interrupted “half way through”
by a reset. Atomicity is based on a notiontadnsaction as made available by the following API
methods (see class javacard.framework.JCSystem):

e beginTransaction() starts an atomic update of persistent data.

e commitTransaction() performs and terminates an atomic update. If a reset occurs before a
transaction is committed, the transaction is aborted (see below).

e abortTransaction() aborts an atomic update, i.e., all writings into persistent data areas are un-
done to recover the state of persistent memory just prior to the previous call to beginTransac-
tion().

Note that non-persistent data areas (i.e., transient array and local variables) are unaffected by transac-
tions: changes are never undone.

Some API methods (see class javacard.framework.Util) also perform atomic array updates, as if

in a transaction (but can be used whether or not a transaction is currently active):

e arrayCopy() atomically copies an array segment into another one.
e setShort() atomically copies two bytes in an array.

Note that, conversely, some methods perform non-atomic writexgs) if a transaction has already
been started

e arrayCopyNonAtomic() non-atomically copies an array segment into another one.
e arrayFillNonAtomic() non-atomically fills an array segment with a given value.

2.5 Memory Management

In Java Card, memory allocation is mostly dynamic: all data areas are dynamically allocated, except
static fields. However, there is no garbage collection (as of Java Card 2.1) and memory cannot be

!Depending on implementations, these data areas may still contain information in memory although it is unreachable by
the application. This memory can be observed via hardware means though (g 3@lso



2.6 Firewall: Object Creation and Access 5

explicitly freed — in a context where memory is a rare and expensive resource. Consequently, as
memory is a scarce resource, most applications allocate dynamic data areas at installation and per-
sonalization time, and never allocated any data area later on. Objects and arrays are thus generally
allocated only during the execution of methods install() and processData(), as well as in process() in
the part of the code that corresponds to personalization and that can be executed only dj-é&)(see

As a result, the data structure of an applet is usually fixed, as if immutable. Still, a few instance
fields of reference type are sometimes used as caches (rather than as pointers to substructures): their
value may vary during processing.

2.6 Firewall: Object Creation and Access

The Java Card firewall takes into account the following aspects:

the currently selected applet,

object ownership (and transience status),

context switching (when invoking a method),

access across contexts (via global arrays and JCRE permanent/temporary entry point objects,

shareable interface objects.

Any attempt to go through the firewall raises a SecurityException. An analysis must thus model the
above features of Java Card to address SecurityException issues.

2.7 Use of Arrays

One of the characteristics of a Java Card applet, compared to other IT applications, is the heavy use of
arrays. Arrays are the main communication medium, starting with the APDU buffer used as I/O for
APDU command processing as well as for data communication via a shareable interface object.

Arrays are often heterogeneous, i.e., various data (sometimes unrelated) are grouped into the same
array. It is the case in particular for the APDU buffer that groups input (resp. output) data. Different
“logical” arrays are also sometimes grouped into a single actual array in the implementation to reduce
the number of objects and hence to reduce the memory footprint. A security analysis must thus be able
to tell apart different array elements, i.e., array accesses at differentindices. Otherwise, all information
in the array has to be considered the same.

Besides, the same array is often used with different contents during the execution of methods. This
is the case in particular of the APDU buffer, that is first used to read input data (possibly in several
successive chunks if the data are too large), then used as a temporary array during processing, and last
used to write output data (possibly in several successive chunks too). A security analysis must thus be
program-point sensitive, at least regarding some important arrays.

2.8 Silent Overflow

In Java Card, arithmetic operations silently overflow: additions, subtractions, multiplications and
negations are performed with an implicit modulo which corresponds to the size of the (signed) integer
type. This is not a specificity of Java Card but it is something to take into account when considering
the security of Java Card applets. In many cases, existing applets do not check possible overflows
when performing arithmetic operations.



6 3 SECURITY PROPERTIES

2.9 Control Flow

The control flow of Java Card applets is that of programs in object-oriented languages, with the fol-
lowing specificities.

e Virtual method invocation.There is very little use of inheritance. (Only a few classes are
typically defined anyway.) Besides, there usually is no method overriding, except for the im-
plementation of abstract methods or “dummy” methods (such as the default methods of class
javacard.framework.Applet).

¢ Interface method invocatiotsually, only a few classes implement an interface.

e Exceptions.Java Card applet programmers generally do not use exceptions as an algorithmic
programming means (as opposed to just a way to signal errors). Still, the whole possible control
flow has to be taken into account to yield safe analysis results, including the case where an
exception is caught before being rethrown or before another exception is thrown.

3 Security Properties

This section provide a preliminary list of security properties to be studied in the SecSafe project, in
the light of the Java Card specificities mentioned in section 2. This list is preliminary for two reasons:
(1) we are still waiting for possible feed back from the other partners, (2) the set of properties will
grow and adapt as the project develops.

Many of the examples used in the following to illustrate properties are extracted from or inspired
by the Demoney application [MMO1], that is a demonstrative electronic purse.

For readability reasons, all examples provided in this document are in Java Card, as opposed to
the JCVM language. However, the translation to JCVML as well as to Carmel (the JCVML dialect
studied in the SecSafe project) [Mar01] is straightforward.

3.1 Memory Allocation Control

It is very important for a Java Card applet to control the use of the (meager) memory resources
(see§2.5). The basic memory allocation control reads as follows.

Bounded Memory Allocation: The dynamic memory allocated by an applet instance
must be bounded.

Checking this property requires exploring all the control flow of the applet, including the different
patterns of calls to the applet entry points. In particular, a graph of all reachable states (memory
configuration patterns) could be constructed to determine “points of no return” after which no memory
allocation can be performed.

As applets generally allocate dynamic data areas at installation and personalization tig2el(see
and never allocate any data area later on {2¢®), another aspect of memory allocation control is:

No Memory Allocation after Personalization: Memory allocations must be performed
during installation and/or personalization only.

As there is no way to implicitly know when personalization is finished {&e#), this second property
has to be parameterized by an explicit characterization of personalization. There are two ways to do
So.



3.2 Information Flow Control 7

e Personalization can be characterized by the format of an APDU command, or a set of formats
if personalization requires several commands. The last personalization command must mark a
point where the applet cannot be repersonalized.

e Personalization can also be characterized by a condition expressed on the state of the applet
(typically on an instance field acting as a personalization flag). The definitive truth value of this
condition indicates that personalization is finished and that the applet cannot be repersonalized.

In both cases, “the applet cannot be repersonalized” means that if a new personalization command is
received, then an error is raised without altering the state of the applet.

Here is an example:

DESKey adminKey;
OwnerPIN pin;

install(...) {
/I Allocation during installation
adminKey = (DESKey) KeyBuilder.getinstance(...);

}
process(...) {
switch (...) {
case PERSONALIZE:
if (pin != null) /I Already personalized?
ISOException.throwlt(SW_CONDITIONS_NOT_SATISFIED);
/I Allocation during personalization
pin = new OnwerPIN(maxPINtry, maxPINsize);
break;
case DEBIT:
if (pin == null) /I Not personalized yet?
ISOException.throwlt(SW_CONDITIONS_NOT_SATISFIED);
}

In this example, the applet is considered personalized (and thus operational) when tipnfield
becomes different from null. At this time, any attempt to repersonalize the applet (which would
reallocate memory) raises an error.

3.2 Information Flow Control

One of the primary aspects of security is the preservation of secrets. Information stored in the a Java
Card applet typically has to be typed with secrecy levels. Information with given secrecy levels are
required not to be disclosed.

Information Privacy: Given types of information must not flow outside of the package
or the API/JJCRE.

The different types of the information present in the applet has to be provided as a parameter to this
property. There are two ways to do so.

1. A map of the applet data areas is specified and annotated with secrecy types.



8 3 SECURITY PROPERTIES

2. Data provided to the applet during personalization is specified and annotated with secrecy types.

Both kinds of specifications have a practical interest. As a matter of fact, we actually have to consider
two properties, depending on the way security information is specified.

Note that, in either case, the secrecy type of external methods, including API methods, must also
be provided, including their side effects and the flow from the method arguments to the result of the
invocation.

We are only interest here ilirectleakage of informatiof i.e., secret information sent for output,
provided as arguments to insecure external methods, provided as return value, etc. This property is
illustrated by the following example.

DESKey adminKey; /I Secret
process(...) {

/I Store key at offsets 12—-27 of APDU buffer (length of 2 key triple DES is 16 bytes)
adminKey.getKey(adpuBuffer, (short)12);

/I Output info of APDU buffer at offsets 0—4

apdu.sendBytes((short)0, (short)5); /I OK, not sending any secret

/I Output info of APDU buffer at offsets 10-17

apdu.sendBytes((short)10, (short)8); /I BAD, sending part of secret
sio.meth(apduBuffer,...); /[ BAD, giving secret as argument

}

Analyzing this property requires in particular taking into account features such as the applet lifetime

(§2.1) and entry points@.2), atomicity §2.4), and the use of array$(7). The presence of the fire-

wall (§2.6) is also to be considered to reduce the number of false positives as it dynamically prevents
potential leaks: objects containing secret information can safely flow outside of the applet because
attempts to access their secret fields fails and raises a SecurityException.

3.3 Service Control

Some services offered by an applet must be available only to a restricted, authenticated group of
clients.

Conditional Execution Points: Given program points must be executable only if given
conditions are satisfied.

Note that this property has two parameters:
e aset of program points, to be defined on the applet bytecode (possibly via the program source),
e a set of corresponding conditions concerning values stored in the data areas of the applet.

2Indirect leakage of information corresponds to secret information that can be deduced analyzing the answers of the
applet to various inputs (including state changes), observing the time required to provide an answer, etc. Indirect leakage
can occur when there are conditions in the program that depend on secret information. We do not consider this kind of
leakage here, nor do we considerdwareleakage such as the observation of the card memory —£3&ghough.



3.4 Error Prediction 9

Here is an example based on Demoney where a program point (where the balance is updated) must be
executable only when a condition is satisfied (the security level must at least be “credit” and the PIN
must be validated).

case CMD_CREDIT:
if (securLevel < CREDIT)
ISOException.throwlt(SW_SECURITY_STATUS_NOT_SATISFIED);
else if (pin.isValidated())

{
/I Program point of interest — OK, conditions to reach this point are satisfied
balance += amount;

}

else

3.4 Error Prediction

Security often implies safety. In Java, static typing and (implicit) dynamic checking prevents most
safety problems. Still, exceptions can be thrown and reach the toplevel.

In the case of Java Card, if any exception attains the toplevel, i.e., goes up past the applet entry
point that was invoked by the JCRE, then the current command is aborted and the response message
(possibly not completed yet) is terminated by a status word as follows: if the exception is an ISOEXx-
ception, the status word is given by the reason code of the exception; otherwise the reason code is
0x6f00, meaning “no precise diagnosis”.

Throwing an ISOException is the only way to provide a status word in a response message. As
status words fully take part in applet specifications, throwing an ISOException is thus perfectly nor-
mal; it generally signals a misuse of the application. On the other hand, throwing any other exception
generally denotes an abnormal behavior: something wrong happened and the applet invocation aborts
without any specific explanation. (However a specific exception can perfectly be caught and possibly
turned into an ISOException; what we consider here are exceptions that reach the toplevel.)

As a matter of fact, whereas an ISOException has to be explicitly thrown by the applet (i.e., using
instructionthrow ), most other exceptions are implicit raised as executing an APl method call or
an instruction when an error occurs, e.g., a null pointer exception. (All exceptions can be explicitly
thrown by the application though.)

We thus consider that an exception different from an ISOException reaching the toplevel is likely
to denote something unexpected, hence possibly dangerous for the security. For instance, the applet
might be left in an unpredicted and ill state.

In practice, exceptions other than ISOExceptions reaching the toplevel should only be considered
as warnings rather than sure errors. In some cases, it is indeed difficult for an applet to provide
a precise diagnosis and 0x6f00 has to be returned anyway. This can be the case when an applet
uses a library that throws runtime exceptions. It makes sense then to deliberately rely on uncaught,
implicitly thrown exceptions and not to impose catching such exceptions (to possibly turn them into
ISOEXxceptions). Leaving exceptions flow up to the toplevel has a non-functional impact: as applet
have to be as small as possible, the try-catch code can be saved. The following property is thus
parameterized to possibly exclude some exceptions different from ISOException, that are accepted
nonetheless at the toplevel.



10 3 SECURITY PROPERTIES

Only ISOException at Toplevel: No exception other than an ISOException should be
thrown as a result of invoking an applet entry point, except for given exceptions thrown
at given program points.

Although it can be expressed on a single line, this property covers very different problems. An anal-
ysis must check conditions for a reference to be null (NullPointerException) or to have a wrong type
(CastException, ArrayStoreException), for an integer value to be out of range (IndexOutOfBound-
sException, NegativeArraySizeException), for an object not to be accessed in the proper context (Se-
curityException), etc. For the sake of the study, the property will probably have to be decomposed into
different subproperties, where a single type of exception different from ISOException is prevented to
reach the toplevel:

No X Exceptions at Toplevel: No exceptions typed should be thrown as a result of
invoking an applet entry point, except if thrown at given program points.

Moreover, the JCRE automatically raises a TransactionException (and thus returns a 0x6f00 status
word) if an invoked entry point method returns without closing an open transaction. To take this
behavior into account, a variant of the above property, specialized for the TransactionException, reads
as follows. (See alsgR.4.)

Well-formed Transactions: For all execution paths:
e Do not start a transaction without having committed or aborted the previous one.
e Do not commit or abort a transaction without having started any.
e Do not let the JCRE close an open transaction.

Note that the property does not mention the applet toplevel: this property says that a TransactionEx-
ception must not be throwat all, i.e., at any program point. Note also that we have excluded here the
case where a TransactionException is thrown before the commit buffer is full as this is implementation
dependent.

Here is an example.

process(...)
{
if (...)
abortTransaction(); /l BAD, no transaction has started yet
beginTransaction(); /I OK, this is a new transaction
if (...)
beginTransaction(); /I BAD, a transaction has already started
else
return; /I BAD, the current transaction was not terminated
if(...)
commitTransaction(); /I OK, the started transaction is committed
else
abortTransaction(); /I OK, the started transaction is aborted
}

The case where a transaction Ipassiblybeen started is trickier. For instance:



3.5 Atomic Updates 11

logRecord(...)

{
/I Remember if a transaction is started at entry point
boolean inTrans = JCSystem.getTransactionDepth() > O;

if (linTrans)
beginTransaction(); /I OK, new transaction started only if none already

currRec = (currRec+1l) % logRec.length;
logRec[currRec].amount = amount;
arrayCopy(buffer, DATE_OFFSET,DATE_LEN,logRec[currRec].date);

if (linTrans)
commitTransaction(); /I OK, there always is a started transaction

/I Transaction depth on return is the same as when entering the method

3.5 Atomic Updates

It is fundamental for Java Card applets not to go into an unsound state. Because a reset can happen
at any time, applets must make sure that all their state updates are sound and atof@cHséis
gives rise to the following property.

Atomic Updates: Given sets of objects fields and permanent array elements that are
considered as related must be updated atomically, i.e., in the same transaction or using
an atomic APl method call.

This property has got a parameter: sets of related persistent data areas that are to be updated simul-
taneously. These persistent data areas are static fields, instance fields and elements of non-transient
arrays.

Here is an example based on Demoney where a balance and a log record (not detailed here) have
to be kept in phase; however, the maximum balance can be updated independently. (The balance, the
log record and the maximum balance are kept in persistent memory.)

beginTransaction();

balance += amount;

updateLogRecord(balance, terminalld, date);

commitTransaction(); /I OK, balance and log record updated atomically

beginTransaction();
balance += amount;
commitTransaction(); /I BAD, the balance is updated, not the log record

beginTransaction();

balance += amount;

updateLogRecord(balance, terminalld, date);

localVariable++; /I OK, local variables do not take part in the persistent state



12 3 SECURITY PROPERTIES

transientArray[0]++; /I OK, transient arrays do not take part in the persistent state
maxBalance = newMax; /I BAD, transaction also used for other persistent data areas
commitTransaction();

3.6 Overflow Control

The specification of applets often mentions arithmetic operations on integers. Implementations must
take care of the limited precision of primitive integers and on possible overflowsd$8e In practice,

it is sometimes convenient to let some integer variables overflow, e.g., in the case of counters. We
define the following parameterized property.

No Unwanted Overflow: Additions, subtractions, multiplications and negations must
not overflow, except at given program points.

This property is very important as overflows can make the application state inconsistent and hence
lead to security flaws. Here is an example, difficult to find using test cases, where a possible overflow
hides an error in the implementation of a specification.

short balance, maxBalance, credit; /[ Assumption: variables always positive
if (balance+credit > maxBalance) /[ BAD, overflow is possible
throwlt(SW_CREDIT_TOO_HIGH);
else
balance += credit; /I BAD, overflow possible, balance possibly negative

With this implementation, crediting the purse can not only be turned into a debit but also can introduce
an unexpected state as the balance, assumed to always be positive, can now be negative. This piece of
code should rather have been implemented as follows.

short balance, maxBalance, credit; /I Assumption: variables always positive
if (balance > maxBalance-credit) /I OK, no overflow possible
throwlt(SW_CREDIT_TOO_HIGH);
else
balance += credit; /I OK, no overflow, balance stays positive

A similar example could lead a debit transaction to actually crediting the purse.

3.7 Manipulation of Plaintext Secret

The hardware of smart cards is designed to be a kind of safe. However, it is not totally tamper-proof.
Using appropriate devices, it is possible to observe the memory and the behavior of a running smart
card. As a consequence, an applet should store and maniplaetxtsecrets (as opposed to crypted
secrets) as little as possible.

As a first step towards limiting the manipulation of plaintext secrets, we consider the following

property

Use of Plaintext Secret:If a program reads a given plaintext secret information in its
memory, it must use it.



3.7 Manipulation of Plaintext Secret 13

In other words, there must be “good reasons” for taking the risk of a hardware observation. The secret
(e.g., a key) must be used in some useful computation (e.g., the construction of a session key). Note
that an observable use of a computation involving a plaintext secret can be in a subsequent call to
method process().

Here is an example based on Demoney where a plaintext secret (the credit key) is used to construct
a session key, that is used in turn to exchange data between the terminal and the applet.

byte[] keyData, random;
DESKey creditkey, sessionKey;

install(...) {
keyData = makeTransientByteArray(...);
creditkey = KeyBuilder.getinstance(...);
sessionKey = KeyBuilder.getinstance(...);

}

process(...) {
switch (...) {
case PERSONALIZE:

creditkey.setKey(...); /I Secret key is stored into the applet
case CREDIT_AUTHENTICATE: // Sometime, later, on other call to process()

/I Access to a plaintext secret
creditkey.getKey(keyData, (short)0);
/I Computation of a session key in plaintext
for (short i = 0; i < (short)16; i++)
keyData[i] "= random[i];
/I Record new session key
sessionKey.setKey(keyData, (short)0);
/I BAD, part of plaintext secret never used later on
random[0] = keyData[0];
/I Erase plaintext secret (but use of plaintext secret still visible in sessionKey)
arrayFillNonAtomic(keyData, (short)0, (short)16, (short)0);
/I Appropriateness of other use of plaintext secret (to compute session key) still pending
return;

case GET_DATA: /[ Later again, on yet another call to process()

signature.init(sessionKey, MODE_VERIFY);
signature.sign(inBuf, ..., apduBuf, ...);
apdu.sendBytes(...); /I OK!, previous use of plaintext secret now observable

}

Analyzing this property requires taking into account in particular features such as the applet lifetime
(§2.1) and entry points§R.2), as the use of a plaintext secret may span across multiple calls to the



14 REFERENCES

applet entry points.

4 What Analyses?

Static analyses are approximations. When given an application, a coarse analyzer can always answers
“maybe something can go wrong”, which is not very useful. This concluding section elaborates on this
issue and discusses the characteristics of analyses that are to verify the properties given the previous
section.

Precision vs. Complexity. All incorrect programs must be detected, with as little false positives as
possible. It is alright if the analysis takes time: a low complexity is important but precision is
even more important (provided an answer can be computed in a few hours). It must be also
remembered that Java Card applets are small (typically, a few Kbytes): a complexity that would
be impractical for most real-life programs can perfectly make sense in the Java Card world.

Feedback Information. To provide useful feedback to the applet programmer or owner, it is not
enough to say “typecheck error in program Foo” or “unsatisfiable constraint 237”. Error and
warning messages should include items such as the location in the code and the involved pro-
gram entities (data areas, etc.). While prototypes developed during the SecSafe project do not
have to be fully usable in terms of user-friendliness, the techniques used for the analyses must
allow the traceability of information so that this user-friendliness is possible if an actual product
is later developed.

The assessment of the above features — as part of the SecSafe studies — will have to include com-
parison to related work, and in particular:

o differences in the nature of security properties,
o differences in precision,
o differences in usability.

References

[Mar01] Renaud Marlet. Syntax of the JCVM Language To Be Studied in the SecSafe Project.
Technical Report SECSAFE-TL-005, v1.7, Trusted Logic, May 2001.

[MMO01] Renaud Marlet and &dric Mesnil. Demoney / Loyalex — A Demonstrative Electronic
Purse And A Loyalty Application. Technical Report SECSAFE-TL-007, v1.0, Trusted
Logic, June 2001.



