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Abstract

Stack inspection is a mechanism for programming secure applications by which a method can obtain
information from the call stack about the code that (directly or indirectly) invoked it. This mechanism
plays a fundamental role in the security architecture of Java and the .NET Common Language Runtime.
A central problem with stack inspection is to determine to what extent the local checks inserted into the
code are sufficient to guarantee that a global security property is enforced. In this paper, we present a
technique for inferring a secure calling context for a method. By a secure calling context we mean a
pre-condition on the call stack sufficient for guaranteeing that execution of the method will not violate a
given global property. This is particularly useful for annotating library code in order to avoid having to
re-analyse libraries for every new application. The technique is a constraint-based static program analysis
implemented via fixed point iteration over an abstract domain of linear temporal logic properties.

1 Introduction

Stack inspection has been proposed as a mechanism for programming access control in secure applications
in which code components from different protection domains have to co-operate. It enables a component to
obtain information about the code that (directly or indirectly) invokes its methods by letting it inspect the
call stack of the run-time environment. Based on this information, the component can decide whether or
not the callers have the right to access a given resource. Stack inspection plays a fundamental role in the
security architecture of Java [Gon97] as well as in the CLR [Mic02].

To get an intuitive understanding of stack inspection we sketch how it is used in Java. Assume that code
is given a set of permissions (based on its origin, who signed it, etc.), indicating whether the code has been
allowed e.g., to write to and read from files, to access peripherals, or to initiate communications with other
hosts. The static method checkPermission, when called with a particular permission as argument, will
inspect the call stack from top to bottom and check that every method on the stack has that permission.
If the check fails, a security exception is raised. The only way a component without permission can use
such protected resources is by invoking methods that have been marked as privileged. Marking a method as
privileged means that stack inspection will stop when it is encountered in the call stack, essentially bestowing
all its permissions to whoever called it.

As with other kinds of run-time checks (e.g., dynamic typing), a central problem with stack inspection
is the following:

Are the local checks inserted into the code sufficient to guarantee that a global security property
is enforced?
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From a certification point of view, it is desirable to develop a program logic with sound semantic foundations
that allows to prove such properties formally. Furthermore, stack inspection incurs a performance penalty,
so the number of inserted checks should be kept low in order not to slow down execution drastically. Such
a logic would also be useful for eliminating such redundant checks but we do not pursue this issue further
here (see [SS00, PSS01]).

To address the above-stated problem, verification mechanisms based on static program analysis and
model checking have been proposed [BJLT01, JLT99]. These verification techniques are whole-application
analyses that require the program as well as the libraries to be available for analysis. Having to re-analyse
library functions means that even small programs take long to analyse. It is desirable to render the anal-
ysis more modular by developing an analysis that for each method calculates a secure calling context that
characterizes those call stacks for which we are certain that the global security property is not violated if
the method is invoked with one of theses stacks as current call stack. The contributions of this paper can be
summarised as follows:

• we provide a semantic definition of secure calling contexts based on an operational semantics of
control-flow graphs with security checks,

• we derive a constraint-based analysis that characterises the secure calling context of a method de-
scribed by a control flow graph,

• we show how secure calling contexts can be calculated effectively by symbolic fixed point iteration
over a lattice built from linear temporal logic formulae.

The rest of the paper is organised as follows. Our program notion will be a standard control-flow graph
extended with check nodes indicating those program points where stack inspection is done. Section 2 for-
malises the notion of such extended control flow graphs (CFGs) and define their operational semantics.
Section 3 defines the specification language (a version of linear temporal logic) in which the security prop-
erties are expressed. Section 4 introduces an inference system that given a global security property will infer
a collection of set constraints whose solution is a valid set of secure calling contexts for the nodes of the
CFG. These set constraints are not immediately solvable, so we reinterpret them as constraints over a lattice
of temporal logic formulae (Section 6) and show how an iterative fixed point algorithm can be used to solve
these constraints (Section 7). Section 8 compares with related work and Section 9 concludes and outlines
further work.

2 Program model

In this section we review the notion of control-flow graph (CFG) from [JLT99] that will serve as an abstract
program model. This model is not tied to one particular programming language. It abstracts away all data
flow and focuses on security checks and control flow i.e., which procedures (or methods, or functions) are
called during execution and in what order. Nodes in a CFG correspond to program points and edges model
the flow of control. There are three types of nodes: call, return and check(γ). Call nodes represent
method calls in the program and return nodes signal the end of a method. A check node check(γ) represents
stack inspection with respect to property γ: execution will proceed only if the current machine state satisfies
γ. In the model we have two type of edges in order to distinguish between two types of control flow.
Sequential composition of code is represented by a transfer edge (labelled with TG) between nodes. Method
calls are modelled by call edges (labelled with CG) that bind call sites to their potential entry points.

Our model is also equipped with a labelling function Attr that maps nodes to sets of uninterpreted
attributes ranged over attr. This provides a simple way to formalize security policies that assign each piece
of code a protection domain specifying its rights.
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n0 : call n3 : check(γ)

n1 : call n4 : return

n2 : return
TG :

CG :

Attr :
n0, n1 7→ {System}
n2 7→ {System ,Crit}
n3, n4 7→ {Manager}

γ = F(Accountant ) ∧ F(Manager)

Figure 1: A control flow graph

Definition 2.1 A control-flow graph (CFG) is a 6-tuple

G = (NO , IS ,EN ,TG ,CG ,Attr)

where NO ⊆ Nodes is the set of nodes, EN ⊆ NO is the set of nodes designated as entry points, and IS

maps a node to its type. Formally,

IS : NO → {call, return, check(γ)}
EN : P(NO)
TG : NO → P(NO)
CG : NO → P(NO)
Attr : NO → P(attr)

Control-flow graphs are subject to various well-formedness constraints, such as all checks and calls must
be sequentially followed by another node, no code can follow sequentially after a return node, all calls must
have at least one outgoing call edge and the origin of such call edges must be a call node.

Example 2.2 We will use the CFG in Figure 1 as our running example. The unique entry node n0 is
indicated by an arrow. Furthermore, the check node is labelled by a property

γ = F(Accountant) ∧ F(Manager)

whose precise meaning will be explained in Section 3. Informally, system code (nodes n0,n1,n2) intends
to execute a critical operation in node n2. The global security property to be enforced requires that this
operation should only be executed if two actors Manager and Accountant have given their consent. To
enforce this property, the check(γ) node performs a dynamic stack inspection. This inspection checks that
there will be a node with the Accountant attribute and a node with the Manager attribute in the call stack
when control reaches the check(γ) node.
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2.1 Construction of a CFG

Representing a program by its control flow graph is a standard technique. It is not the main issue of this paper
so we only briefly review the various analyses available for this purpose. To obtain the CFG corresponding
to an object-oriented program, its code is transformed into basic blocks and everything but methods calls is
abstracted away. The construction of the call edges corresponding to a call X.foo() in the program is based
on a static analysis that calculates an over-approximation of the classes of the objects that are being stored in
variable X. Precision of the graph depends on this approximation [GFDC97]. The simplest approximations
are limited to syntactic scans of the class hierarchy to find classes defining a method called foo—possibly
improved by taking into account what classes are actually instantiated in the program [BS96]. A constraint
based analysis, as proposed by Palsberg and Schwartzbach [PS94] takes data flow into account. In its basic
formulation, this analysis ignores the sequential control flow of the program since it only calculates one
global approximation for each variable. Its precision can be further improved by distinguishing between
different occurrences of a variable, rendering the analysis flow-sensitive as proposed by Pande and Ryder
[PR96].

2.2 Semantics of a CFG

In previous works [BJLT01], the operational semantics of a CFG was defined by a transition relation showing
how the call stack evolves at each step in the execution of the program. The semantics is parameterised on
the satisfaction relation

�
of the logic in which the check properties are expressed. For this paper, the logic

in question will be linear temporal logic.
With Stacks = Nodes∗ the set of finite sequences of nodes from Nodes , the transition relation . ⊆

Stacks × Stacks is . = .check ∪ .call ∪ .return defined by the following rules where s ∈ Stacks and n, n′,
m ∈ NO .

.check

IS (n) = check(γ)

n
TG
→ n′

s:n
�
γ

s:n .check s:n′
.call

IS (n) = call

n
CG
→ m

s:n .call s:n:m

.return

IS (m) = return

n
TG
→ n′

s:n:m .return s:n′

For this paper, we need a semantics that characterises the transitions made within a particular calling
context. In order to achieve this, we generalise the operational semantics . into a collecting semantics
[CC77a, NNH99] that collects the set of states reachable within a given number of transitions. More pre-
cisely, for a given starting stack s:n, our semantics collects the set <s:n>1..i of stacks reachable from s:n
in at least one and at most i transitions and before execution exits via a return node r of the method in
which n is found. In other words, collection continues until execution reaches a stack of form s:r with r a
return node. All these stacks will be prefixed by s and will be longer in case of nested method calls.

Definition 2.3 With s ∈ Stacks and i ∈ � , we define the family of sets <s>1..i to be the smallest sets
satisfying the following system of constraints:

cscheck

IS (n) = check(γ)
s:n

�
γ

n
TG
→ n′

<s:n>1..i ⊇ {s:n′} ∪<s:n′>1..i−1
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cscall

IS (n) = call

n
CG
→ m

<s:n>1..i ⊇ {s:n:m} ∪<s:n:m>1..i−1

csreturn

IS (n) = call

n
CG
→ m

s:n:r ∈ {s:n:m} ∪<s:n:m>1..j

IS (r) = return

n
TG
→ n′

<s:n>1..i ⊇ {s:n′} ∪<s:n′>1..i−j−1

where n, n′,m, r ∈ NO and s ∈ Stacks . Furthermore, we define:

<s:n>0..i ≡ {s:n} ∪<s:n>1..i

<s:n>+ ≡
∞
⋃

i=1

<s:n>1..i

<s:n>∗ ≡
∞
⋃

i=0

<s:n>0..i

The rule cscheck expresses that if n′ follows sequentially after a check n then everything that can be reached
from n′ in i− 1 steps can be reached from n in i steps, provided that the initial state satisfies the check. The
rule cscall can be understood similarly. The rule cs return can be understood as follows. If a return node of a
method m can be reached in j steps and if a state s is reachable in i− j− 1 steps from the node sequentially
following a call to m, then s is reachable in i steps from a call node to m.

3 Security properties

Properties are specified in a linear temporal logic [Eme90], LTL, that will be interpreted over the set Stacks

of finite sequences of nodes that corresponds to call stacks. This logic is expressive enough to express both:

• Check properties that specify local verifications (the properties in the check nodes of the CFGs).

• Security properties that specify global invariants of the execution of the program.

LTL formulae are inductively defined over a set of attributes attr. In addition to the propositional logic
operators (∨, ¬) we introduce the temporal operators Strong Next (X∃) and Strong Until (U∃). The set of
properties is defined by:

φ ::= True | p | ¬φ | φ ∨ φ |X∃φ | φU∃φ (p ∈ attr)

From this core syntax, usual propositional syntactic sugar (False,∧,⇒) can be defined, together with the
weak variants of the temporal operator (X∀ and U∀), some universal and existential modalities (G and F)
and an emptiness property (ε):

Weak Next : X∀φ ≡ ¬X∃¬φ
Eventually : Fφ ≡ TrueU∃φ

Globally : Gφ ≡ ¬F¬φ
Weak Until : φ1U∀φ2 ≡ φ1U∃φ2 ∨Gφ2

Empty : ε ≡ ¬(TrueU∃True)
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The semantics of LTL is expressed by the satisfaction relation
�

: s
�
φ stands for “the call stack s is

a model of φ”. Formulae are interpreted from the top of the stack i.e., the first element taken into account
by a formula evaluation is the node that was last pushed on the stack. When writing stacks as sequences
we adopt the convention that stacks grow from left to right. Hence, in the stack s = sn: . . . :si: . . . :s0, the
node sn is the initial calling node, s0 the current program point and si is its (i+ 1)st element from the top.
Furthermore, we introduce the notation si = sn: . . . :si to denote the stack from which the i top elements
have been removed, and |s| = n + 1 to denote its length. With the labelling function Attr that gives the
attributes of each node n, the semantics of the core LTL operators is defined as follows:

s
�

True

s
�
p iff |s| > 0 and p ∈ Attr(s0)

s
�
¬φ iff not (s

�
φ)

s
�
φ1 ∨ φ2 iff s

�
φ1 or s

�
φ2

s
�

X∃φ iff |s| > 1 and s1
�
φ

s
�
φ1U∃φ2 iff ∃k, 0 ≤ k < |s|. sk

�
φ2

and ∀i, 0 ≤ i < k. si �
φ1

Informally, a stack always models True and models an attribute p if and only if p is part of the attributes of
the top element of the stack. Operators ¬ and ∨ have their usual meanings. A stack models X∃φ if the stack
deprived from its top is non-empty and verifies φ. Finally, a φ1U∃φ2 formula is verified by stacks such that
their exists a sub-stack modelling φ2 and all the previous sub-stacks models φ1. We can also informally
explain semantics of the syntactic sugar: F, G and U∀ have their usual meanings, i.e. Fφ stands for “φ
is verified at least one time”, Gφ for “φ is always verified”, and φ1U∀φ2 for “φ1 is either always verified
or verified until φ2 is”. The Weak Next is a Next variant which is always verified by stacks of one or zero
element, and ε is only verified by the empty stack.

Finally, we introduce the concretisation function

concr : LTL → P(Stacks)
concr(φ) = {s | s

�
φ}

that to an LTL formula assigns the set of stacks that satisfies that formula.

3.1 Examples of properties

Check properties are expressed as LTL terms. As shown by the .check rule, the execution stops if the
property does not hold for the current call stack. This framework can be instantiated to the Java stack
inspection mechanism by only allowing check nodes to be labelled by an instance of the JDK formula
defined by

JDK(perm) = permU∀ (perm ∧ Priv)

which is a direct LTL formalisation of the property “all nodes must have the permission perm until a
privileged node with the perm permission is encountered” (see [BJLT01] for a detailed discussion).

A security property is an invariant over call stacks. We say that a program is secure, with respect to a
given security property ϕ, if and only if all the reachable call stacks, starting execution at an entry node n0,
do model ϕ. As an example, we might want to verify that critical program points, i.e. nodes with the Crit

attribute, can only be reached from code with a given permission P . This is expressed by the formula

Crit ⇒ G(P ).
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For optimisation purposes, we might want to eliminate redundant stack inspections ( i.e., stack inspections
that always succeed). To prove that a check node n labelled by a property φ can be suppressed, the global
invariant to verify is

N ⇒ φ

where N is an attribute that identifies n.

Example 3.1 We return to our running example (Figure 1) and formally state a security property. The code
is deemed secured if the critical action Crit in node n2 can only be executed with the agreement of both
Manager and Accountant code. Formally, we require the security property:

Crit⇒ F(Manager) ∧F(Accountant )

If the top element of the call stack is a critical node then there exists in the stack nodes with the attributes
Manager and Accountant . In order to enforce this property, node n3 performs a dynamic check:

F(Manager ) ∧ F(Accountant)

There are calling contexts for which the code from Figure 1 is not secure with respect to the global property
defined in Example 3.1. To exhibit a security violation, it suffices to consider an execution trace starting
with a call stack n:n0 where n has the Accountant attribute.

n:n0 . n:n0:n3 . n:n0:n4 . n:n1 . n:n1:n3 . n:n1:n4 . n:n2

This execution passes the dynamic check in node n3 twice (successfully) and finally reaches the critical
node n2 with the call stack n:n2. This stack does not model the property: none of the nodes has the
Manager attribute. On the other hand, the code is obviously secure for all calling contexts for which a node
has both Accountant and Manager attributes. An obvious question is whether this requirement is stronger
than needed. Our forthcoming analysis will allow to answer this in the affirmative (Example 7.9) because
it is specifically designed with the aim of inferring the most liberal pre-condition that prevents security
violations.

4 Secure calling contexts

In this and the following section we develop a constraint system that for each node in a given CFG specifies
a secure calling context, relative to a global security property. A secure calling context for a node n is a set
S of call stacks satisfying that for all stacks s ∈ S, an execution starting from s:n in the sub-graph rooted
by n will respect the global security property. The notion of secure calling context for a node n relative to a
global security property ϕ is formalized by the predicate sec : NO ×P(Stacks) → Bool .

sec(n, S) ≡ ∀s ∈ S. <s:n>∗ ⊆ concr (ϕ)

where concr(ϕ) denotes the set of stacks satisfying ϕ (cf. Section 3).
The stack inspection mechanism will stop execution if the stack does not satisfy the property labelling a

check node. It is essential that the analysis reflects this effect of stack inspection properly, otherwise little
code will be deemed secure. To this end, we introduce two auxilliary properties of nodes: trans and returns.
The trans predicate characterises those calling contexts in which execution of node n may transit to the
nodes following sequentially in the CFG. Thus, for a check node, trans is true of a set if it contains a stack
that will pass stack inspection. Formally, trans : NO ×P(Stacks) → Bool is defined by:

trans(n, S) ≡
∀s ∈ Stacks . (∃n′ ∈ NO. s:n′ ∈ <s:n>+) ⇒ s ∈ S
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Similarly, the returns predicate characterises those calling contexts in which a method call may return
(because there is an execution in which all stack inspections succeed). This predicate serves to propagate
the effect of stack inspection from called methods to the caller. Informally, it states that if a return node r
is reachable from a given node n with a given stack then that stack must belong to the calling context S.
Formally, returns : NO ×P(Stacks) → Bool is given by:

returns(n, S) ≡

∀s ∈ Stacks .





∃r ∈ NO . IS (r) = return

and

s:r ∈ <s:n>∗



 ⇒ s ∈ S

We observe that it is always possible to remove elements from a secure calling context—the result will
still be a secure calling context. Indeed, the empty set is a safe calling context albeit not a very interesting
one. This is not the case for the sets satisfying trans and returns. These predicates will continue to hold
if we replace a context with a larger context. Thus, in general, we are interested in finding the greatest set
satisfying sec and the smallest sets satisfying trans and returns. This is reflected in the following, where we
propose a method for finding such sets based on calculating least fixed points over lattices. These lattices
will have the same carrier set, P(Stacks), but will be ordered by subset inclusion or by reverse subset
inclusion depending on whether we are looking for the greatest or the smallest set.

5 Constraints for secure calling contexts

Having formalised the notion of secure calling context, the goal is now to show how to infer such contexts
for a given CFG. We do this in two steps.

1. We show how to derive a system of set contraints
�
G � C

from a CFG G and prove that any solution to
these constraints will provide a secure calling context for each node in G.

2. The system
�
G � C

is formulated using an extensional representation of sets in order to ease the proof of
correctness. We derive an abstract version

�
G � #

of the constraints that can be solved over an abstract
domain of approximate, intensional representations of sets, which in our case will be formulae of
LTL.

5.1 Syntax-directed constraint generation

For each node n in a given CFG G we introduce a triple of set variables, (ρn, σn, τn) ∈ P(Stacks)3 with
the intention that for any valid solution, ρn will satisfy the returns predicate, σn will satisfy sec and τn will
satisfy trans.

In addition to the standard set-theoretic operators ∪,∩ and \ (complement), the constraints are con-
structed using an operator δn, whose effect on a set of stacks is to select those that have n as top element
and remove this top element from the stacks. Formally we have a family of operators, one for each node:

Definition 5.1 Let n ∈ NO be a node. Define δn : P(Stacks) → P(Stacks) by

δn(S) = {s | s:n ∈ S}

The system of set constraints
�
G � C

generated for a CFGG is defined inductively by the set of rules given in
Figure 2. We here provide an informal justification of a selection of rules. First, notice that a variable can
be constrained by (i.e., appear to the left) in several constraints. It is thus the joint effect of these constraints
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τcheck
IS (n) = check(γ)

τn ⊇ δn(concr (γ))
τcall

n
CG
→ m

τn ⊇ δn(ρm)

τreturn
IS (n) = return

τn ⊇ ∅

ρtransfer

n
TG
→ n′

ρn ⊇ (τn ∩ ρn′)
ρreturn

IS (n) = return

ρn ⊇ Stacks

σglobal
σn ⊆ δn(concr (ϕ))

σcall

n
CG
→ m

σn ⊆ δn(σm)

σtransfer

n
TG
→ n′

σn ⊆ (Stacks \ τn) ∪ σn′

Figure 2: Syntax-directed definition of the set constraints
�
G � C

.

that determines the value of the variable. The rule ρtransfer expresses that we can reach a return node from
node n if control can transfer to a successor node n′ from which we can reach a return node. The rule σcall

deals with the case where a node n is a call to a method starting with node m. It uses the δ operator to
express that executions starting with call stack s at node n are secure only if the executions emanating from
node m with stack s:n are also secure. Finally, the rule σtransfer formalises that when control can transfer
sequentially from n to n′, an execution starting from n with stack s is secure only if either the execution
starting from n′ with the same stack is also secure or the execution never tranfers from n to n ′ with this
stack (i.e. s belongs to Stacks \ τn).

Example 5.2 Continuing our running example, the nodes n3 and n4 from figure 1 give rise to the following
set constraints.

τn3
⊇ δn3

(concr (F(Accountant) ∧ F(Manager)))
τn4

⊇ ∅
ρn3

⊇ τn3
∩ ρn4

ρn4
⊇ Stacks

σn3
⊆ δn3

(concr (Crit ⇒ F(Accountant) ∧F(Manager )))
σn3

⊆ (Stacks \ τn3
) ∪ σn4

σn4
⊆ δn4

(concr (Crit ⇒ F(Accountant) ∧F(Manager )))

5.2 Existence of a solution to
�
G � C

A solution to a system of constraints
�
G � C

is a triple

(ρ, σ, τ) ∈ (NO → P(Stacks))3

of functions. In the following we will use σn to denote both a variable and the value of that variable in a
solution (ρ, σ, τ).
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The existence of a solution to a constraint system
�
G � C

is argued in the standard way [CC95] by in-
terpreting the constraints as monotone operators over lattices of subsets and then using the Knaster-Tarski
fixed point theorem to assert the existence of a least fixed point and hence a solution to the constraints. We
first make the following observation:

Observation 5.3 The operator δn is monotone over the lattice (P(Stacks),⊆) and also over its dual
(P(Stacks),⊇).

Definition 5.4 The lattice (RST ,vRST ) of solutions is defined by

RST = (NO → P(Stacks))3,

(ρ1, σ1, τ1) vRST (ρ2, σ2, τ2) iff ∀n ∈ NO .
∧







ρ1
n ⊆ ρ2

n

σ1
n ⊇ σ2

n

τ1
n ⊆ τ2

n

Lemma 5.5 Let c ∈
�
G � C

be a constraint whose right-hand side is an expression e in the variables ρ, σ, τ .
Then, e, considered as an operator e : RST → P(Stacks), is monotone.

Most right-hand sides are either constants or uses operators like δn which are monotone. The only non-
trivial case are the constraints of the form σn′ ⊇ (Stacks \ τn)∪σn′ generated by the rule σtransfer . Assume
(ρ1, σ1, τ1) vRST (ρ2, σ2, τ2). Then, σ1

n ⊇ σ2
n and τ1

n ⊆ τ2
n , so

(Stacks \ τ 1
n) ∪ σ1

n′ ⊇ (Stacks \ τ 2
n) ∪ σ2

n′

which implies monotonicity since the σn are ordered by ⊇.

It follows that the system
�
G � C

has a least solution with respect to the ordering vRST . As discussed in
Section 4, the least solution is also the most informative in that it will be the largest among all the secure
calling context. In Section 6 we use abstract interpretation to derive an abstract system of constraints whose
solutions are safe, computable approximations of the least solution to

�
G � C

.

5.3 Correctness of
�
G � C

The remainder of this section is devoted to prove the correctness of the constraint system in Figure 2.

Theorem 5.6 Let G be a CFG and let (ρ, σ, τ) be a solution to
�
G � C

. Then, for all nodes n ∈ NO , σn is a
secure calling context (i.e., sec(n, σn) holds).

We prove the more general result that for all nodes n ∈ NO , we have returns(n, ρn), sec(n, σn) and
trans(n, τn). The proofs are by induction over the computation length of the collecting semantics. To make
the induction argument explicit, we express directly the trans, returns and sec predicates in terms of the
collecting semantics. This transformation is a direct consequence of the property:

s ∈ <s′>+ iff ∃i ∈ � . s ∈ <s′>1..i

Using predicate logic identities, we obtain equivalent definitions of the trans, returns and sec predicates:
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Property 5.7

sec(n, S) iff ∀i ∈ � . ∀s ∈ Stacks . s ∈ S ⇒ σi(s, n)
trans(n, S) iff ∀i ∈ � . ∀s ∈ Stacks . τ i(s, n) ⇒ s ∈ S
returns(n, S) iff ∀i ∈ � . ∀s ∈ Stacks . ρi(s, n) ⇒ s ∈ S

where σi, τ i and ρi : Stacks ×NO → Bool are predicates defined as follows:

σi(s, n) = <s:n>0..i ⊆ concr (ϕ)

τ i(s, n) = ∃n′ ∈ NO . s:n′ ∈ <s:n>1..i

ρi(s, n) = ∃r ∈ NO . s:r ∈ <s:n>0..i

and IS (r) = return

Correctness proofs will be carried out with respect to these alternative definitions of the trans, returns and
sec predicates. Since the ρn and τn are defined by mutual recursion but without using σn we first prove
correctness for them. We then prove correctness for σn using that of τn.

5.3.1 Correctness of the τn, ρn sets

Lemma 5.8 For all integer i, node n and stack s, the following holds:

ρi(s, n) ⇒ s ∈ ρn

τ i(s, n) ⇒ s ∈ τn

The proof is by induction over the collecting semantics computation step i.
Base case: i = 0

• <s:n>1..0 is empty. As a result, τ 0(s, n) cannot be satisfied and the τ part of the lemma is vacuously
true.

• <s:n>0..0 is the singleton {s:n}. Hence, ρ0(s, n) ⇒ IS (n) = return. Now, by ρreturn , we have
s ∈ ρn, therefore the ρ part of the lemma is verified.

Inductive step As an induction hypothesis, we assume that the lemma is verified up to a given i:

∀n ∈ NO . ∀s ∈ Stacks . ∀j ≤ i.
∧

{

ρj(s, n) ⇒ s ∈ ρn

τ j(s, n) ⇒ s ∈ τn

To prove the property for the rank i+1, we suppose τ i+1(s, n) (resp. ρi+1) and prove s ∈ τn (resp. s ∈ ρn).
The proof relies on the fact that <s>i+1 is the smallest set satisfying the constraints. It follows that a stack
s′ belonging to <s>i+1 can only be produced by one of the collecting semantics rules. We consider each
case in turn.

• cscheck : IS (n) = check(γ), s:n
�
γ, n

TG
→ n′

– τ : In this case, we directly prove that s ∈ τn. Since by τcheck , δn(concr (γ)) ⊆ τn, it amounts
to prove that s ∈ δn(concr (γ)). By definition of δ and concr , we have the following identities:
s ∈ δn(concr (γ)) iff s:n ∈ concr(γ) iff s:n

�
γ. Furthermore, we have s:n

�
γ by

hypothesis. As a result, the τ part of the lemma is verified.
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– ρ: We suppose a stack s:r ∈ <s:n′>0..i such that IS (r) = return and prove that s ∈ ρn. By
ρtransfer , it amounts to prove that s ∈ τn ∩ ρn′ . We have just proved that s ∈ τn under weaker
hypotheses. It remains to prove that s ∈ ρn′ . By hypothesis, we have ρi(s, n′) and by induction
hypothesis, ρi(s, n′) ⇒ s ∈ ρn′ . It follows that s ∈ ρn, and the ρ part of the lemma is verified.

• cscall : This case is vacuously true. Since the cs call rule collects stacks from nested calls, any stack s′

belonging to <s:n:m>1..i is strictly longer than s:n. It follows that we cannot pick any stack s:r in
this set.

• csreturn : IS (n) = call, n
CG
→ m, ρj(s:n,m), n

TG
→ n′

– τ : We directly prove that s ∈ τn. By induction hypothesis, ρj(s:n,m) ⇒ s:n ∈ ρm, and by
definition of δ , s ∈ δn(ρm). Now, by τcall , τn ⊇ δn(ρm), therefore s ∈ τn and the τ part of the
lemma is verified.

– ρ: We suppose a stack s:r ∈ <s:n′>0..i−j such that IS (r) = return and prove that s ∈ ρn.
The arguments are similar to the cscheck case except that we use the induction hypothesis at rank
(i−j): ρi−j(s, n′) ⇒ s ∈ ρn′ . As a result, we have s ∈ ρn and the ρ part of the lemma is
verified.

5.3.2 Correctness of the σn set

Lemma 5.9 For all integer i, node n and stack s, the following holds:

s ∈ σn ⇒ σi(s, n)

The proof is by induction over i.
Base case: i = 0 We suppose that s ∈ σn and prove σ0(s, n). Since <s:n>0..0 = {s:n}, it amounts
to show that {s:n} ⊆ concr (ϕ). Now, by σglobal , σn ⊆ δn(ϕ). It follows that s:n ∈ concr (ϕ) i.e.,
{s:n} ⊆ concr(ϕ) and the lemma is verified.

Inductive step As an induction hypothesis, we assume that the lemma is verified up to a given i:

∀n ∈ NO . ∀s ∈ Stacks . ∀j ≤ i. s ∈ σn ⇒ σj(s, n)

To prove the property for rank i + 1, we assume that s ∈ σn and prove σi+1(n, s). The proof is case
analysis over the collecting semantics rules. Another time, we rely on the fact that <s>i+1 is the smallest
set satisfying the constraints.

• cscheck : IS (n) = check(γ), s:n
�

concr (γ), n
TG
→ n′. We suppose s ∈ σn and prove <s:n′>0..i ⊆

concr (ϕ). By σtransfer , σn ⊆ (Stacks \ τn) ∪ σn′ . From τ correctness, we have trans(n, τn) and
s:n′ ∈ <s:n>+ that is s ∈ τn. Hence, we deduce that s ∈ σn′ . By induction hypothesis, we obtain
that σi(s, n′) i.e., <s:n′>0..i ⊆ concr (ϕ), and the lemma is verified.

• csreturn : IS (n) = call, n
CG
→ m, ρj(s:n,m), n

TG
→ n′. We suppose that s ∈ σn and prove that

<s:n′>0..i−j ⊆ concr (ϕ). The arguments are similar to the cs check case except that we use the
induction hypothesis at rank i− j: s ∈ σn′ ⇒ σi−j(s, n′).

• cscall : IS (n) = call, n
CG
→ m. We suppose that s ∈ σn and prove that <s:n:m>0..i ⊆ concr (ϕ).

By σcall , σn ⊆ δn(σm), and, by definition of δ, s ∈ σn ⇒ s:n ∈ σm. Now, by induction hypothesis,
s:n ∈ σm ⇒ σi(s:n,m), therefore <s:n:m>0..i ⊆ concr(ϕ), and the lemma is verified.
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6 Symbolic calculation of secure calling contexts

The set constraints obtained from a graph G are formulated using extensional definitions of sets that might
be infinite. In order to obtain a system of constraints that is more amenable to symbolic manipulations,
we replace the concrete, extensional sets of stacks by an abstract, intensional representation based on LTL
formulae and derive a constraint system to be solved over an abstract domain of (equivalence classes) of
such formulae.

The abstract constraints are built from usual propositional operators (¬,∨,∧) and an abstraction of the δ
operator from the previous section (Definition 5.1). Intuitively, given a formula that denotes the calling con-
texts, δ

#

computes the weakest precondition such that the property is verified before a call. This definition
is an adaptation of the transition relation given by Vardi in his automata-theoretic approach to LTL [Var96].

Definition 6.1 Let n ∈ NO be a node. The abstract weakest calling context operator δ
#

n : LTL → LTL is
inductively defined over the structure of the formula.

δ
#

n (p) = p ∈ Attr(n)

δ
#

n (¬φ) = ¬δ
#

n (φ)

δ
#

n (φ1 ∨ φ2) = δ
#

n (φ1) ∨ δ
#

n (φ2)

δ
#

n (X∃φ) = φ ∧ ¬ε

δ
#

n (φ1U∃φ2) = δ
#

n (φ2) ∨ (δ
#

n (φ1) ∧ φ1U∃φ2)

The following lemma states that the δ
#

operator calculates the most precise precondition for a property
φ to hold at a given node n. In other words, there is no loss of precision when calculating with this abstract
version of δ.

Lemma 6.2 For a given a triple (s, n, φ) ∈ Stack ×NO ×LTL(P ), δ
#

satisfies:

s
�
δ

#

n (φ) ⇐⇒ s:n
�
φ

The proof is by induction over the structure of φ. Induction hypothesis states the correctness of the
lemma on every sub-formulae. Here, we only give the case for the U∃ operator.

We first prove that s:n
�
φ1U∃φ2 implies s

�
δ

#

n (φ1U∃φ2). ByLTL semantics, s:n
�
φ1U∃φ2 ⇔∃k, 0≤k<|s:n|. s:nk

�
φ2∧

∀i, 0≤i<k. s:ni
�
φ1.

• If k=0, then it implies s:n
�
φ2, and, by induction hypothesis, s

�
δ

#

n (φ2). By δ
#

definition, this implies
s

�
δ

#

n (φ1U∃φ2).

• If k>0, then it implies s:n
�
φ1 and s:nk �

φ2 and ∀i, 0<i<k. s:ni �
φ1. By induction hypothesis, we

have s:n
�
φ1 ⇔ s

�
δ

#

n (φ1). Now, by s:nj
�
φ⇔ sj−1

�
φ for j>0 and by U∃ semantics, it also implies

sk−1
�
φ2 and ∀i, 0≤i<k−1. si �

φ1, i.e., s
�
φ1U∃φ2. Therefore, s:n

�
φ1U∃φ2 implies s

�
(δ

#

n (φ1) ∧

φ1U∃φ2). By δ
#

definition, this also implies s
�
δ

#

n (φ1U∃φ2).

We then prove that s
�
δ

#

n (φ1U∃φ2) implies s:n
�
φ1U∃φ2. By δ

#

definition, s
�
δ

#

n (φ1U∃φ2)⇔ s
�
δ

#

n (φ2)∨

(δ
#

n (φ1) ∧ φ1U∃φ2).

• If s
�
δ

#

n (φ2), then, by induction hypothesis, we have s:n
�
φ2, which leads to s:n

�
φ1U∃φ2.

• Else, if s
�
(δ

#

n (φ1) ∧ φ1U∃φ2), we have, by induction hypothesis, s:n
�
φ1. We also have, by U∃ se-

mantics, ∃k, 0≤k<|s|. sk
�
φ2∧∀i, 0≤i<k. s

i
�
φ1. Hence, by sj

�
φ⇔ s:nj+1

�
φ, ∃k, 0<k<|s:n|. s:nk

�
φ2∧

∀i, 0≤i<k. s:ni
�
φ1. According to U∃ semantics, this implies s:n

�
φ1U∃φ2.
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We now recast the set-based contraints from the analysis in Figure 2 as constraints over LTL formulae,
by replacing the set-based operators (⊆,∪,∩, δn) with their abstract counterpart (⇒,∨,∧, δ

#

n ). The result
is a similar syntax-directed constraint generation scheme, which is shown in Figure 3.

τcheck
IS (n) = check(γ)

τn ⇐ δ
#

n (γ)
τcall

n
CG
→ m

τn ⇐ δ
#

n (ρm)

τreturn
IS (n) = return

τn ⇐ False

ρtransfer

n
TG
→ n′

ρn ⇐ (τn ∧ ρn′)
ρreturn

IS (n) = return

ρn ⇐ True

σglobal
σn ⇒ δ

#

n (ϕ)
σcall

n
CG
→ m

σn ⇒ δ
#

n (σm)

σtransfer

n
TG
→ n′

σn ⇒ (¬τn ∨ σn′)

Figure 3: Constraint specification of τ ,ρ,σ

Let
�
G � #

denote the result of analysing graph G. It is clear that there is a one-to-one correspondence
between the contraints in

�
G � C

and
�
G � #

. In addition, a solution to
�
G � #

is defined in a way similar to that
of solutions of

�
G � C

as a triple of maps from nodes to LTL formulae. The correctness of
�
G � #

can then
amounts to showing that the set of stacks satisfying the LTL formula calculated for σ

#

n is a secure calling
context for n. This can be stated formally using the concretisation function concr that allows to pass from
LTL formulae to the set of stacks that satisfy the formula.

Proposition 6.3 Let (ρ
#

, σ
#

, τ
#

) be a solution to
�
G � #

for a given CFG G. Then, for all nodes n in G,

sec(n, concr (σ
#

n ))

The proof consists in showing that if an abstract solution (ρ
#

, σ
#

, τ
#

) satisfies a constraint in
�
G � #

,
then its concretisation satisfies the corresponding constraint in

�
G � C

. Correctness then follows by appealing
to the correctness of

�
G � C

.

Example 6.4 After LTL abstraction, here is the set of constraints obtained from the CFG presented in
figure 1. We use ϕ as abbreviation for the formula

Crit⇒ F(Accountant) ∧ F(Manager).
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τ
#

n0
⇐ δ

#

n0
(ρ

#

n3
)

τ
#

n1
⇐ δ

#

n1
(ρ

#

n0
) τ

#

n1
⇐ δ

#

n1
(ρ

#

n3
)

τ
#

n2
⇐ False

τ
#

n3
⇐ δ

#

n3
(F(Manager ) ∧F(Accountant ))

τ
#

n4
⇐ False

ρ
#

n0
⇐ τ

#

n0
∧ ρ

#

n1

ρ
#

n1
⇐ τ

#

n1
∧ ρ

#

n2

ρ
#

n2
⇐ True

ρ
#

n3
⇐ τ

#

n3
∧ ρ

#

n4

ρ
#

n4
⇐ True

σ
#

n0
⇒ δ

#

n0
(ϕ) σ

#

n0
⇒ δ

#

n0
(σ

#

n3
) σ

#

n0
⇒ (¬τ

#

n0
∨ σ

#

n1
)

σ
#

n1
⇒ δ

#

n1
(ϕ) σ

#

n1
⇒ δ

#

n1
(σ

#

n0
)

σ
#

n1
⇒ δ

#

n1
(σ

#

n3
) σ

#

n1
⇒ (¬τ

#

n1
∨ σ

#

n2
)

σ
#

n2
⇒ δ

#

n2
(ϕ)

σ
#

n3
⇒ δ

#

n3
(ϕ) σ

#

n3
⇒ (¬τ

#

n3
∨ σ

#

n4
)

σ
#

n4
⇒ δ

#

n4
(ϕ)

7 Iterative constraint solving

The set of constraints
�
G � #

obtained by analysing the control flow graph G can be solved by an iterative
fixed point calculation. However, our domain of LTL formulae does not a priori guarantee termination of
standard iterative fixed point algorithms. The reasons is that logical implication of LTL formulae ⇒ is a pre-
order (syntactically distinct formulae may be equivalent semantically) whose quotient by LTL equivalence
still contains infinitely increasing chains. In our algorithm, rather that explicitly computing over the quotient
domain, we rely on LTL equivalence to check stabilisation of the iteration. This approach is feasible because
equivalence of LTL formulae is decidable. The central part of this section is thus concerned with establishing
that all iteration sequences arising during the verification of a particular property will be stationary after
a finite number of iterations. The essential observation underlying this result is that the set obtained by
iterating the δ

#

n functions over a finite set of formulae is again a finite set (modulo LTL equivalence).
Our resolution scheme rephrases constraint solving in terms of a least fixed point problem [CC95,

NNH99]. For a complete lattice (D,v,t,u), a set of constraints C induces an iterator F : (V ar → D) →
(V ar→ D) obtained by by gathering the constraints defining the same variable into a single expression.

F (ρ)(x) =
⊔

{e(ρ) | x w e ∈ C}

where e(ρ) is the evaluation of the expression e in the environment ρ that maps variables to values of
D. Monotonicity of the expressions ei implies monotonicity of the iterator F which, by Tarski’s theorem,
ensures that it has a least fixed point and hence that a least solution to the original system exists. Furthermore,
this fixed point can in certain cases be calculated by a chaotic fixed point iteration [CC77b] since if the
ascending Kleene chain ⊥, F (⊥), F 2(⊥), . . . stabilises at a least upper bound then this least upper found is
the least fixed point of F .

To apply this resolution technique to our analysis and prove termination, we show how to build, for a
given property ϕ and a given program G, a domain of LTL-formulae that is finite modulo LTL equivalence.
Resolution will take place within this domain. This domain, quotiented by LTL equivalence, induces a finite
lattice (thus complete) required by the theory. Let Var be a finite set of variables, Const the finite set of
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ground LTL formulae from the check nodes in G together with the global property ϕ and let NO be the
nodes of G. The expressions derived from

�
G � #

belong to the following inductively defined set:

E ::= x | c | δ
#

n (E) | E ∧E | E ∨E | ¬E | True | False

where x ∈ Var , c ∈ Const ,n ∈ NO .
As a result, the iterator derived from such a system of constraints consists of composition of δ

#

functions
and propositional operators (∧,¬,∨). In order to prove termination of these iterators, we show that it is
possible to identify a finite sub-domain (modulo equivalence) of LTL formulae that contains Const and is
closed under all δ

#

-compositions and propositional operators. As a consequence, our fixed point iterations
are bounded.

Definition 7.1 For a formula φ, the finite set Sub(φ) is formally defined to be the smallest set of formulae
satisfying:

φ ∈ Sub(φ)
φ1 op φ2 ∈ Sub(φ) ⇒ {φ1, φ2} ⊆ Sub(φ)

where op ∈ {U∃,∨,∧}
¬φ′ ∈ Sub(φ) ⇒ φ′ ∈ Sub(φ)
X∃φ

′ ∈ Sub(φ) ⇒ {φ′, ε} ⊆ Sub(φ)

Definition 7.2 Let A be a finite (unordered) set. Prop(A) is the set of propositional formulae built over A.

The following lemma establishes an important closure property of domain Prop(Sub(φ)), viz., that
applying δ

#

to a formula in Prop(Sub(φ)) results in a property that still belongs to the set Prop(Sub(φ)).
This result will be used for arguing the termination of the fixed point iteration.

Lemma 7.3 Given a pair (φ, ψ) of LTL formulae and a node n, we have

ψ ∈ Prop(Sub(φ)) ⇒ δ
#

n (ψ) ∈ Prop(Sub(φ))

The proof is by structural induction over ψ.
Base case: If ψ = p then δ

#

n (ψ) is either True or False depending on whether p belongs (or not) to
Attr(n). Obviously, {True,False} is a subset of Prop(Sub(φ)).

Inductive case: We first consider the case of formulae whose top operator is temporal – either X∃ or
U∃. We rely on the fact that such formulae can only belong to Sub(φ).

• ψ = X∃(ψ
′): δ

#

n (ψ) = ψ′ ∧ ¬ε. Now, by hypothesis, {ψ′, ε} ⊆ Sub(φ), therefore, by definition of
Prop , ψ′ ∧ ¬ε ∈ Prop(Sub(φ)).

• If ψ = ψ1U∃ψ2 then δ
#

n (ψ) = δ
#

n (ψ2) ∨ (δ
#

n (ψ1) ∧ ψ). Since both ψ1 and ψ2 belongs to Sub(φ),
by applying induction hypothesis, we have that {δ

#

n (ψ2), δ
#

n (ψ1)} ∈ Prop(Sub(φ)). The property
follows by definition of Prop .

In a second step, we deal with logical operators ∨,∧,¬. The proof relies on the fact that δ
#

simply dis-
tributes over those operators. As a result, the case where ψ = ψ1 ∨ ψ2 is representative. By definition of
δ

#

, we have δ
#

n (ψ1 ∨ ψ2) = δ
#

n (ψ1) ∨ δ
#

n (ψ2). Since {ψ1, ψ2} ⊆ Prop(Sub(φ)), by applying induction
hypothesis, we have that {δ

#

n (ψ1), δ
#

n (ψ2)} ⊆ Prop(Sub(φ)). The property follows by definition of Prop .

The Sub (resp. δ
#

) operator extends to sets C of LTL formulae in the obvious element-wise fashion,
by stipulating that Sub(C) =

⋃

φ∈C Sub(φ) (resp. δ
#

n (C) =
⋃

φ∈C δ
#

n (φ)). The following Corollary is an
immediate consequence of Lemma 7.3.
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Corollary 7.4 Let Const be a finite set of LTL formulae. For all nodes n ∈ NO ,

δ
#

n (Prop(Sub(Const))) ⊆ Prop(Sub(Const))

This, together with the fact that Prop(Sub(Const)) by construction is closed under the logical operations,
allows to conclude that the fixed point iteration induced by the original constraint system will take place
entirely inside the domain Prop(Sub(Const)). To conclude that the iteration stabilises in a finite number of
steps, it remains to prove that Prop(Sub(Const)) is finite modulo LTL equivalence. Lemma 7.5 is the key
argument.

Lemma 7.5 Let A be a finite set, Prop(A) is finite modulo propositional equivalence.

There are several normal forms for Prop(A) (based on BDDs, conjunctive normal forms, . . . ) that will have
to be considered when implementing the resolution. The actual representation is not important for arguing
the termination of the resolution.

Theorem 7.6 Prop(Sub(Const)) is finite modulo LTL equivalence.

By construction, Sub(Const) is finite. By Lemma 7.5 Prop(Sub(Const)) is finite modulo propositional
equivalence. Furthermore, propositional equivalence implies LTL equivalence. As a result, Theorem 7.6
holds.

Theorem 7.6 and the monotonicity of δ
#

n ,∧,∨ implies that the iteration is guaranteed to terminate.

Theorem 7.7 Let F : (V ar → LTL) → (V ar → LTL) an iterator such that F (ρ)(xi) = Ei(ρ) and
Const the set of ground LTL formulae occurring in the Ei. Then the iteration sequence

v0
i = False, . . . , vk+1

i = Ei[xj 7→ vk
j ], . . .

stabilises in a finite number of steps.

Example 7.8 Let {x⇐ δ
#

n (x), x⇐ JDK(p)} be a set of constraints. Its iterator is F : ({x} → LTL) →
({x} → LTL) defined by

F (ρ)(x) = (δ
#

n (x) ∨ JDK(p))(ρ)

where Attr(n) = {p}. We observe that

JDK (p) ≡ pU∀(p ∧ Priv)
≡ pU∃(p ∧ Priv) ∨ ¬(TrueU∃¬p)

We first show how to calculate δ
#

n (JDK (p)):

δ
#

n (JDK (p))

= δ
#

n (pU∃(p ∧ Priv) ∨ ¬(TrueU∃¬p))

= δ
#

n (pU∃(p ∧ Priv)) ∨ ¬δ
#

n (TrueU∃¬p)

= δ
#

n (p ∧ Priv) ∨ (δ
#

n (p) ∧ pU∃(p ∧ Priv))

∨¬(δ
#

n (¬p) ∨ (δ
#

n (True) ∧TrueU∃¬p))
= False ∨ (True ∧ pU∃(p ∧ Priv))

∨¬(False ∨ (True ∧TrueU∃¬p))
= pU∃(p ∧ Priv) ∨ ¬(TrueU∃¬p)
= JDK (p)
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We can then find the least fixed point by an iteration that stabilises after two steps:

x0 = False

x1 = δ
#

n (False) ∨ JDK (p)
= JDK (p)

x2 = δ
#

n (JDK (p)) ∨ JDK (p)
= JDK (p)

Example 7.9 gives the properties inferred by our analysis for the code in Figure 1. From a security point of
view, we are interested in the context inferred for entry nodes. In our case, the single entry point is n0 and
its secure calling context is characterised by

σ
#

n0
= F(Accountant ) ⇒ F(Manager)

As a consequence, for execution to be secure, node n0 must be called from a stack s that satisfies σ
#

n0
.

Analysing this result more closely, we see that security is achieved in the following two cases:

• If s
�
¬F(Accountant) (i.e. if there is no node with the Accountant attribute on the call stack) then

the execution is cut by the dynamic stack inspection in node n3. It follows that the code is secured
since the critical action is not executed.

• If s
�

F(Manager) (i.e. there is a node with the Manager attribute on the call stack) then the
dynamic stack inspection ensures that s

�
F(Accountant ). In this case, the critical action is executed

in a secure fashion.

Example 7.9 The least solution of the fixed point system from Example 6.4 is given below. The solution is
computed by fixed point iteration over the domain

Prop({TrueU∃Accountant ,TrueU∃Manager ,Crit})

Recall that F(φ) stands for TrueU∃φ. Each variable is initialised to the least element of its lattice: False

for τ
#

, ρ
#

constraints; True for σ
#

constraints. For readability, the solution is given in terms of the
syntactic sugar F.

τ
#

n0
= τ

#

n1
= τ

#

n3
= F(Accountant)

τ
#

n4
= τ

#

n2
= False

ρ
#

n0
= ρ

#

n1
= ρ

#

n3
= F(Accountant )

ρ
#

n2
= ρ

#

n4
= True

σ
#

n0
= σ

#

n1 = F(Accountant) ⇒ F(Manager )

σ
#

n2
= F(Accountant) ∧F(Manager )

σ
#

n3
= σ

#

n4
= True

8 Related work

The concept of stack inspection has been formalised in various ways. Wallach and Felten [WF98] formalise
the Java stack inspection using a belief logic. The paper is based on the security mechanisms as implemented
in Netscape, which can be seen as an extension of the JDK 1.2 mechanisms, allowing to grant specifically
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named permissions to a piece of code. Granting permission P to code C1 adds the belief statement Ok(P )
to the set of beliefs held in the current stack frame, and calling code C2 records the beliefs of the earlier stack
frames by adding the statement C1 says Ok(P ) to the belief set for the stack frame for C2. Fournet and
Gordon [FG02] provides an alternative formalisation of stack inspection based on operational semantics.
Their aim is to establish laws for equational reasoning in order to validate program transformations in the
presence of stack inspection.

The present work builds on the verification techniques developed by Besson, Jensen and others [JLT99,
BJLT01] in which model checking techniques are combined with whole-program static analysis techniques
in order to verify global security properties of stack-inspecting code. The methods presented in op. cit. dif-
fer from what is presented here by providing essentially yes/no answers to a given verification problem,
whereas the inference algorithm here must infer (a symbolic representation of) the secure calling contexts
of a method. Barthe et al. [BGH02] has developed a compositional proof system for verifying temporal
properties of control flow graphs. This leads to a compositional analysis of secure applet interaction but it
does not deal with stack inspection.

Schneider [Sch00] introduced the idea of security automata as a formalism for defining security proper-
ties. Security automata are a class of Büchi automata that define what are the legal sequences of actions that
a system can take. Erlingsson and Schneider [ES00] and Colcombet and Fradet [CF00] both propose to use
such automata to monitor an executing system such that an action about to be executed can be prevented if
it is deemed illegal by the security automaton. Thus, rather than proving statically that a property is verified
by a program as we do in the present work, the corresponding security automaton is inserted (using program
transformations and optimising analysers) into the program to dynamically monitor its execution. This ap-
proach carries a run-time penalty but allows to use programs in a secure fashion even when their security
cannot be proved statically.

There is relatively little work on analysing stack-inspecting code. The closest to ours is that of Skalka
and Smith [SS00] who propose λsec, a lambda calculus extended with primitives that correspond to the
stack inspection primitives in Java. Permissions can be granted and checked for, and code can be marked

as privileged. A type system allows to infer function types of the form σ
P
→ τ that describe the set P of

permissions necessary for executing a function. In a sequel paper, Pottier, Skalka and Smith [PSS01] recast
the type system in more standard terms by translating λsec into a standard lambda calculus by generalising
Wallach’s security-pasing programming style [Wal99] to higher-order functions. Bartoletti, Degano and
Ferrari [BDF01] develop a data flow analysis for control flow graphs that determines the set of permissions
that will always or will never be available at a given node in the graph. This information can be used to
optimise the stack inspection algorithm in those cases where the analysis determines that a given security
will always be thrown or will never be thrown. Compared to our work, these papers are more restricted
in scope since they are only concerned with verifying the property that the program “does not go wrong”
i.e., that the program does not raise a security exception because a stack inspection failed. In contrast, our
analysis can verify arbitrary invariants of call stacks as long as these are expressible in linear temporal logic.

9 Conclusions

We have presented a static program analysis for inferring secure calling contexts for stack-inspecting meth-
ods relative to a given global security property. We stress that the method works for arbitrary global prop-
erties that can be expressed using our LTL specification formalism. In this respect our analysis is more
general than other analyses for stack-inspecting code [SS00, PSS01] that are concerned with inferring the
permissions required for all stack inspections to succeed. The analysis is proved correct with respect to a
formal semantics and is implemented by a fixed-point iteration over an abstract domain built of temporal
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properties. While the construction Prop(A) of a lattice of boolean functions over a set of atoms A has been
used in analysis of labelled transition systems and of logic programs, it is to the best of our knowledge the
first time that this approach has been used for verifying temporal properties of programs.

The constraint-based analysis has been prototyped in Caml and experimented on a sample of small
control flow graphs. Although the prototype has mainly served to avoid having to calculate the iterations
for the examples by hand, its performance indicates that proper use of BDD-representations might allow to
treat larger, more realistic applications. The size of the constraint system

�
G � #

(and therefore the number
of expressions to be evaluated within one iteration) is linear in the size of the control flow graph G. On the
other hand, the number of iterations is only bounded by the height of the lattice Prop(Sub(γ1, . . . , γn, ϕ))
where γ1, . . . , γn are the different LTL formulae used in the check nodes and ϕ is the global property. The
height of this lattice is exponential in the size | γ1 | + . . . ,+ | γn | + | ϕ | of the formulae. However, in
general we would expect to have | γ1 | + . . . ,+ | γn | + | ϕ |�| G | .

The next step is to extend the analysis to fragments of control flow graphs in order to deal with soft-
ware components in which methods make calls to virtual methods that might not be available for analysis.
The current framework is well suited for this because properties of unknown methods can be represented
as free variables in the generated constraints. However, we would have to extend the iterative constraint
resolution technique to deal with constraints containing free variables, in essence calculating (an intensional
representation of) the relation between properties of the “imported” unknown methods and the properties of
the methods offered by the component. This would constitute a substantial step towards defining a notion of
secure interfaces for stack-inspecting modules.
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