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Abstract. JavaCard is a variant of the Java programming language
specifically designed for use on Smart Cards. In order to support the se-
cure execution of several different applets on a Smart Card, the JavaCard
Virtual Machine implements a firewall that isolates applets from each
other by preventing unwanted information sharing and communication
between applets.

In this paper we report on a prototype tool that can statically verify
that a JavaCard applet does not (try to) violate the firewall rules. Such
a tool is useful for increasing confidence in the security of an applet.
Furthermore, a developer can use the tool for guaranteeing in advance, ie.
before the applet is deployed, that it will not throw a security exception
at an inopportune moment, thus leading to more robust and user-friendly
applets.
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1 Introduction

The JavaCard platform is a multi-applet platform, meaning that a given Java-
Card may contain and execute several different applets from several different,
possibly competing, vendors. In order for an applet to protect sensitive data
from other, malicious, applets the JavaCard platform implements a firewall to
separate applets from each other.

The firewall mediates all method invocations and field accesses between ap-
plets and determines whether or not to allow it. If a given method invocation
or field access is not allowed a security exception is thrown. Note that security
exceptions can not be caught by the program itself, but is rather communicated
all the way back to the card access terminal, ie. the user.

In this paper we discuss the formal development of a prototype tool, based
on well-known static analysis techniques, for verifying that a JavaCard program
does not (try to) violate the JavaCard firewall. Such a tool is useful for increasing
confidence in a programs behaviour (by ensuring that a program does not try to
violate the security policy) and also for enhancing the robustness of a program
(by guaranteeing that no security exceptions are thrown).



Furthermore the developments in this paper are intended to show that the
Flow Logic framework and methodology used for specifying and extending the
analysis is well suited for adding functionality in a structured fashion in step
with increasing demand for guarantees that a program has (or lacks) certain
properties, thereby reducing the workload when designing analyses for such val-
idation.

The rest of the paper is structured as follows. Section 2 discusses the lan-
guage used, Section 3 gives a brief overview of the JavaCard firewall, following
that Section 4 specifies a so-called ownership analysis that will conservatively
approximate the set of possible owner contexts an object can have. The result
of this analysis will form the basis for verifying programs as shown in Section 5.
Section 6 then shows how the analysis and validation can be implemented by
constraint generation and solving. The paper concludes with an example in Sec-
tion 7 and conclusions and future work in Section 8.

2 Introducing Carmel

The JavaCard language contains more than 100 instructions, a significant num-
ber of which are very specialised, eg. the instruction pushO pushes the integer
constant 0 on top of the stack. Such highly specialised instructions are mainly
used for optimisation purposes and are not, as such, essential features of the
language.

The large number of instructions makes JavaCard rather unwieldy and work-
intensive for formal treatment. Therefore we have decided to base our work
upon a JavaCard derivative, called Carmel, developed as part of the SecSafe EU
project, cf. [13].

Carmel is directly derived from JavaCard, mainly by removing non-essential
instructions and adding more generality to the remaining instructions ending up
with a language consisting of only 30 instructions while retaining all the power,
flexibility and expressibility of JavaCard but in a more manageable form. Thus
Carmel can be seen as a “rational reconstruction” of JavaCard. In this paper we
do not consider the instructions for subroutines.

In this section we briefly, and informally, review the Carmel language. For
a formal definition of the Carmel language, including an operational semantics,
see [14,15].

2.1 The Carmel Language

In the following, square brackets are used to denote [optional] arguments to a
given instruction. Many instructions are explicitly annotated with the type of
their argument and/or result. For the purpose of this paper, such annotations
are ignored.
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The instructions for basic stack manipulation in Carmel are as follows:

push ¢t ¢ push constant ¢

pop n pop the top n values

dup n d duplicate the n top values at depth d

swap m n swap the top m values with the following n values

All arithmetic and boolean operators are combined into one instruction parame-
terised on the particular operation to perform. Operators pop their argument(s)
from the stack and push the result:

numop t op [t'] use operator op
For control flow Carmel has the following instructions

goto L unconditional jump
if t ¢cmpOp [nullCmp] goto L conditional
lookupswitch ¢ (k;=>L;)}, default=>L( branch on key
tableswitch t [=>(L;)}, default=>L; branch on index

The conditional usually compares the two top elements on the stack (using
c¢cmpOp); optionally it compares the top element to null. The lookupswitch
and tableswitch instructions are convenient for case constructs.

Methods in the Carmel language can access and modify local variables:

load t z retrieve the value of ©
store t x store a new value in x
inc t = ¢ add ¢ to the value in x

The instructions for manipulating objects are as follows:

new o create a new instance of class o
getstatic f get the value of the static field f
putstatic f store a value in the static field f

getfield [this] f get the value of field f
putfield [this] f store a value in field f

The instructions getfield and putfield look for a reference to the object
whose field is being accessed, on top of the stack. The optional “this”-modifier
indicates that rather than looking for such a reference on top of the stack, the
current object (the one in which the getfield or putfield instruction is exe-
cuted) should be used.

Two instructions are provided for dynamically checking that an object is of
a certain type:

checkcast o check if an object is a subclass of o
instanceof o check if an object is a subclass of o

The above two instructions differ only in their return value: checkcast throws an
exception if the object is not of the specified type, whereas instanceof simply
returns 0 in that case.
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The instructions below cover the various forms of method invocation:

invokevirtual m invoke a virtual method
invokestatic m  invoke a static (class) method
invokespecial m invoke class initialisation method
invokeinterface m invoke an interface

return return from a method invocation

Static methods are class methods and can be invoked directly from a class as
opposed to virtual methods that require a class instance (an object).

Certain static information not directly available in the Carmel syntax is
accessed through special auxiliary functions, eg. to obtain the return type of a
method m we can use the function returnType(m) which, following tradition,
we write as m.returnType.

JavaCard, and thus Carmel, programs rely heavily on the use of arrays, both
for storage and communication. The instructions supporting arrays follow

new (array t) create new array
arraylength return length of array
arrayload ¢t load a value from an array
arraystore t store a value in an array

Finally exceptions can be thrown using the throw instruction:
throw throw an exception

Handlers for exceptions are resolved at a higher level and thus have no direct
representation in Carmel (or JavaCard).

In addition to the instructions outlined above, a typical Carmel program will
use a number of higher-level library functions, eg. for copying the contents of an
array or creating cryptographic keys, and standard APIs, eg. for communicating
with a terminal. In the present paper we do not model the libraries and APIs.

3 The JavaCard Firewall

Smart Cards are often used to store sensitive information, such as cryptographic
keys and personal information, and for this reason it is important that applets are
protected against malicious access to its sensitive data. The JavaCard platform
implements a firewall to separate applets from each other and to make sure that
no unwanted access to an applets data is allowed.

The firewall policy is based on the notion of contexts: applets belonging to
different contexts are not allowed to access each others data, neither fields nor
methods, with a few exceptions discussed below.

JavaCards package structure forms the basis for contexts: two applets that
are instances of classes from the same package are assigned the same context.
Additionally a “system” context is defined by the JavaCard Runtime Environ-
ment (JCRE), and applets belonging to the JCRE context may access applets
in all other contexts without the firewall intervening.
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During execution of an applet, objects that are created are assigned an owner
context based on the context of the applet that created it. A method executes in
the context of its owner, with the exception of static methods that are executed
in the context of the invoker.

Certain specialised applets may wish to share some data with another applet
in a different context, eg. a wallet applet may wish to share some data with a so-
called loyalty applet in order to award “bonus-points” for purchases made with
the wallet. For such situations JavaCard defines two ways in which the firewall
can be circumvented in a controlled manner: JCRE entry points and sharable
objects. The JCRE entry points are objects owned by the JCRE specifically
designed to be accessed from all other contexts. The primary example of such an
entry point being the APDU, through which all communication outside the card
is handled. Sharable objects can be used to grant limited access to an objects
methods (not the fields) across contexts.

It should be noted that the above mechanisms merely allow for data to cross
firewall boundaries, it is still the responsibility of the applet wishing to share data
that it properly authenticates the applet with which to share data. In support of
this, the JavaCard system library implements a limited form of stack inspection,
in the form of a method called getPreviousContextAID that allows an applet
to find out the owner context of the method executing immediately prior to the
last context switch. For the sake of clarity and brevity, we do not consider the
facilities sharing and stack inspection in this paper. The analyses and techniques
discussed in a later section are easily extended to handle these concepts and this
is briefly indicated where relevant in the following sections.

In this paper we shall not go further into the formal details of the firewall
semantics, merely refer to [14,15]. For a thorough introduction to the JavaCard
firewall and sharable objects and their use, see [2].

4 Analysing Carmel Programs

In this section we specify a so-called ownership analysis, which is a static analysis
that conservatively approximates the set of owner contexts assigned to an object.
This will form the basis for verifying that no security exceptions could possibly
be raised by executing the program.

In order for the ownership analysis to be semantically sound, it needs to
consider all possible program executions; rather than start from scratch and
designing an ownership analysis that directly considers all program executions,
we designed the ownership analysis as an extension to a previously developed
control flow analysis (CFA) for Carmel. This CFA is described in detail in [5],
including a formal statement and proof of semantic correctness.

The CFA, and hence the ownership analysis, is specified in the Flow Logic
framework of Nielson and Nielson, cf. [8,12,7]. In the following subsections we
first introduce the abstract domains for the static analysis, following that is a
brief overview of the Flow Logic specification framework and finally we discuss
a few specification clauses for the ownership and control flow analysis in detail.
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4.1 Abstract Domains

The abstract domains are based on a simplified version of the concrete domains
used in the semantics, cf. [14]. The simplified domains ignore semantic informa-
tion that is not pertinent to the analysis. This minimises unnecessary notation
and increases legibility of both analysis and theoretical results.

Objects are abstracted into their class, thus object references are modeled as
classes (similar to the class object graphs of [16]) whereas arrays are abstracted
into their elementtype:

ObjRef = Class ArRef = Type

In order to enhance readability we write (Ref o), rather than merely o, for object
references and (Ref (array 7)) rather than 7 for array references.
References are either object references or array references:

Ref = ObjRef 4+ ArRef

Values are taken to be either numerical values (since we are only interested in
control flow and ownership, numerical values are abstracted to a single constant)
or reference values and abstract values to be sets of such values:

Val = Num +Ref ~ Val=P(Val)  Num = {INT}

In [4] the control flow analysis is extended with a data flow component.

For the ownership analysis we model owners simply as a set of concrete
owners and also associate an abstract owner, ie. a set of possible owners, to each
method in the program, called an “owner cache”:

Owner = P(Owner) OwnerCache = Method — Owner

In order to support stack inspection the above should be extended to record not
only the set of possible owners but also the set of possible context switches.

Abstract objects comprise a mapping from the field ID’s of the object to the
set of abstract values possibly contained in that field and also a set of possible
owners for that object:

Object = (fieldValue : FieldID — Val) x (owner : Owner)

Information about a given objects status as a JCRE entry point or its shareability
can trivially be added here and then checked when verifying a program, cf.
Section 5.

Arrays are modeled in the simplest possible way, namely as an abstract value.
This means that the structure (and length) of the array is abstracted away:

Array = Val

Adresses consist of a method and a program counter, making adresses unique in
a program. In order to correctly handle return values from method invocations
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a special “placeholder” address is defined for every method. This placeholder
address is encoded using a special END-token instead of the regular program
counter

Addr = Method x (NW {END})

The first instruction in a method is assumed to be at program counter 1 and we
write (m, END,,) for the placeholder address belonging to the method m.

We let |m| denote the arity of method m, meaning the number of arguments
the method expects on the operand stack.

The local heap is modeled as a (curried) map from adresses to (local) variables
to abstract values. Thus in our model there is a local heap associated with every
instruction in a method. This is similar to Freund and Mitchells approach, cf. [3].

LocHeap = Addr — Var — Val
For L € Lo/cl-lap we shall write I:(ml,pcl) C i/(mQ,pCQ) to mean
VZ‘ € dom(i(mlapcl)) : i(mlvpcl)(z) E i(m27p62)(x)

and i(ml,pcl) Ca} i(mg,p@) to mean

vy € dom(L(my, per)) \ {} : L(ma, per)(y) T L(ma, pe)(y)

Note that local variables are denoted by natural numbers and zero, ie. Var = Nj.
We now turn to the operand stack. Since the model has to be able to cope
with potentially infinite operand stacks, we use the following domain as the basis
for the stack model:
Val™ = Val* U Val*
However, in anticipation of later developments and applications of the analy-

sis, rather than using the above domain directly, we use it to induce a more
convenient domain via a Galois connection (cf. [8]):

Val® —— (Val*)"

where the abstraction function, «, simply acts as the identity on finite stacks
and maps infinite stacks to top.

With the basic domain for abstract stacks in place, we now associate an
abstract operand stack with every instruction in a method in order to track
operations on the stack in that method:

Stack = Addr — (Val*)T

Elements of (\75|*)—r are written much in the same style as SML lists, thus (A; ::
Ay -+ X) € (Val*) T represents a stack with A; € Val as its top element
and X € Val* as the “bottom” of the stack. The empty stack is denoted by e.
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We introduce the following ordering on abstract stacks, Ay = --- 1 A, and
By - By, from (Val*) "
(Ap - Ap) C (By : B, )<:>
m>nAVie {1 } A;CB
In the interest of succinctness we shall abuse the above notation slightly by
writing (Ag :: -+ -t A,) © L(mog, peo)[0..n] as a shorthand for

Vie{0,...,n}: A; C L(mo,pco)(i)

The abstract global heap comprises two components: an object component,
keeping track of instance fields of individual objects, and a static component,
that tracks the values of static fields for each class:

StaHeap = FieldlD — Val  Heap = (ObjRef — Object) + (ArRef — Array)

4.2 The Flow Logic Framework

The Flow Logic framework can be seen as a “specification approach” to static
analysis, rather than an “implementation approach”. In the framework, instead
of detailing how a particular static analysis is to be carried out, it is specified
what it means for an analysis result (or rather a proposed analysis result) to
be acceptable (correct) with respect to a program. Flow Logic specifications are
usually classified as either verbose or succinct according to the style of specifica-
tion: succinct resembling the style of type-systems in only reporting “top-level”
information and verbose more like traditional data flow and constraint based
analyses in recording all internal flows. The specification in this paper is a ver-
bose specification. We shall not go into further detail with the framework here,
merely refer to [8,12,7] for further information.

The judgements of the Flow Logic specification for the analysis of Carmel
will be on the form

(K,ﬁ,@,ﬁ, §) E addr : instr

where S € sﬁ&, L€ chH\eap7 H € H/ea\p, K e Smﬁﬁ;p, O € Owgrache7
addr € Addr and instr is the instruction at addr. Intuitively the above states
that (K, H,O, L, S) is an acceptable analysis for the instruction instr at address
addr. A detailed discussion of the clauses and judgements for Carmel are given
in the following sections.

4.3 Example Clauses

The putfield Instruction First the specification for the putfield instruction:

(K,H,0,L,S) = (mo, pco) : putfield f
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The putfield instruction transfers the value of the top element of the stack to
the field named as argument to the instruction in the object referenced in the
second element of the stack. Thus the stack must contain at least two elements:

A B X <8(mo,peo)

The specific object to be accessed is resolved at runtime, and a reference to that
object is stored in the second (from the top) element of the stack. The value of
the top element is then stored in the field of the object so referenced:

V(Ref ¢') € B: A C H(Ref ¢’).fieldValue(f)

Here we use the abstract global heap to hold information about the fields of
abstract objects. As noted in Section 4.1 objects are abstracted into their class.
Thus field information for all objects of the same class is merged and stored in
the abstract global heap.

The bottom of the stack is then transferred to the next instruction:

X C S(mo,peo + 1)

and since no local variables were modified, the abstract local heap is transferred
unchanged to the next instruction

i’(mOapCO) E i’(mOapCO + 1)
We then arrive at the following clause for putfield instructions:

(K,H,0,L,S) = (mo, pco) : putfield f
iff A:B: X <aS(mo,pe):
V(Ref ¢’) € B :
A C H(Ref ¢’).fieldValue(f)
X C S(mo, pco + 1)

L(m07pco) E L(mOapCO + 1)

Note that while the putfield instruction is mediated by the firewall, there is no
switch in owner context and therefore no constraints specific to the ownership
analysis in the above specification (contrary to the case for invokevirtual).

The invokevirtual Instruction Finally we discuss the specification for the
invokevirtual instruction:

(K,I:I,O,Ii,g) E (mo,pco) : invokevirtual m

In order to call an instance method, the invokevirtual instruction is used.
Arguments to the method is found at the top of the stack, and as was the case
for the putfield instruction, a reference to the specific object containing the
invoked method is found on the stack, immediately following the arguments to
the method: R

Ay oo Ay i B ir X <8 (mo, peo)
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Next a method lookup is needed in order to find the actual method that is
executed:

m,, = methodLookup(m,c’)

The arguments are transferred to the called method as local variables of the
called method. Furthermore a reference to object containing the called method
is passed as the first local variable (in effect a this pointer):

{(Ref ")} it Ay oo v it Appy E Ly, 1)[0..my ]

Furthermore when a method is invoked in an object, the method will execute in
the same owner context as the object from which it was invoked. This is modeled
in the ownership analysis in the following way:

H(Ref ¢’).owner C O(m,,)

Had we chosen to model not only the set of possible owners but also the set
of possible context switches (to support stack inspection, as mentioned in Sec-
tion 4.1) a further constraint, updating the set of context switches, would be
needed here.

When a method invocation returns, there are two possibilities: either it does
not return a value, ie. it has return type void, or it does return a value. In the
first case, m.returnType = void, we simply copy the rest of the stack on to the
next instruction:

m.returnType = void =
X C S(mo,pco +1)

In the latter case, m.returnType # void, the return value is the top element of
the stack of the invoked method. In order to handle multiple returns from the
invoked method correctly a special address is used, indicated by the END-token
discussed in Section 4.1; it is the responsibility of the clause for the return in-
struction to ensure, that all the possible stacks at all possible return instructions
are transferred to the stack at the special address.

In order for the invoking method to access the return value, it must be
transferred from the top of the stack of the invoked method to the top of the
stack of the invoking method (less the arguments and the object reference):

m.returnType # void =
T:Y aS5(my,ENDy,,) : T2 X C S(mg,pco + 1)

Finally, none of the local variables (of the invoking method) have been altered
and are therefore passed on to the next instruction:

L(mo, pco) T L(mo, peo + 1)
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Joining the above equations we obtain the following clause for invokevirtual
instructions:

(K,H,0,L,S) = (mo, pco) : invokevirtual m
ifft Ay Ay B ng(mo,pco) :
V(Ref ¢') € B :
m, = methodLookup(m,o’)
{(Ref o)} 2 Ay 22+ 2 Ay T L(my, 1)[0.]my ]
H(Ref ¢’).owner C O(my)
m.returnType # void =
T:Y aS8(my,END,,,) : T :: X C S(mg,pco + 1)
m.returnType = void =
X C S(mo,pco + 1)
I:(mo,pco) C I:(mo,pco +1)

5 Verifying Carmel Programs

In this section we show how an acceptable analysis result, as specified in Sec-
tion 4, can be used to guarantee that Carmel programs do not (try to) breach
the firewall.

The putfield instruction is checked by the firewall and may potentially
throw a security exception. The instruction is allowed to proceed only if either
the method executing the putfield instruction is in the JCRE system-context, or
if it has the same owner context as the object whose field is being accessed. This
can be formalised as a formula to be checked against the analysis of a program:
for every putfield instruction the following predicate must hold:

O(mo) = {ICRE} v ) )
(|O(mo)| = |H (Ref ¢’).owner| = 1) A (O(mg) = H(Ref ¢’).owner)

where mg and (Ref ¢’) are quantified as in the analysis (cf. Section 4.3). If it does
hold for every putfield instruction then none of those instructions will violate
the firewall rules. The same rationale applies to the invokevirtual instruction
and gives rise to exactly the same predicate that should be checked.

Note that due to the conservative nature of the ownership analysis, guar-
antees can only be made when we are sure of the owner, ie. when |O(mg)| =
|H (Ref o’).owner| = 1.

Had we chosen to support sharable objects, entry points and stack inspection
the observation predicates would of course be more involved, but still easily
definable.

6 Implementation

Following the tradition of the Flow Logic framework, analyses are implemented
by first converting the high-level Flow Logic specification into a corresponding
constraint generator over a suitable constraint language.
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In this section we briefly outline how the flow logic specification given in
Section 4 systematically can be transformed into a specification for generating
constraints in the Alternation-free Least Fixed-Point logic (ALFP). Constraints
over this logic can be solved efficiently using the techniques described in [10, 11].

6.1 Alternation-free Least Fixed-Point logic
Formulae in ALFP consists of clauses of the following form:
pre := R(z1,...,xx) | pre; A prey | preg V prey | 3z : pre

clause ::= R(x1,...,xx) | 1| clause; A clausey
| pre = clause | Vz : clause

where R is a k-ary relation symbol for k > 1 and x1, ... denote variables while
1 is the always true clause.

We shall not go in to any detail here, but it is straightforward to define the
satisfaction relation, (p,o) EaLrp t, for ALFP over a universe of atomic values
and interpretations p and o of relation symbols and free variables respectively.
For a given interpretation, o, of constants we call an interpretation, p, of relation
symbols a solution to a clause clause if indeed (p, o) Earrp clause.

Using the techniques of [10] it is possible to efficiently find solutions to given
clauses. An implementation, called Succinct Solver, using these and other ad-
vanced techniques has been made by Nielson and Seidl and is described in [11].

6.2 Representing the Abstract Domains

In order to use ALFP as the basis for an implementation of the analysis, we
must first find a way to represent the abstract domains of the analysis in ALFP.

Here we only show how to represent the abstract stack and ownership in-
formation and refer to [6] for a more detailed discussion on how to generate
ALFP constraints from Flow Logic specifications and also how to optimise the
generated constraints for speed and memory.

Stacks. In order to model the abstract stack we use a quarternary relation, S,
relating adresses and stack positions to values, thus the clause

S(mOapCOa [3]7 INT)

is intended to mean that the abstract stack at address (mg,pcy) contains an
integer value at stack position three.

Since we must be able to manipulate and calculate stack positions directly
within the clauses, stack positions must be represented explicitly:

[0] = zero
[n + 1] = suc([n])
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since only stack positions, and not eg. local variable indices, are manipulated or
calculated directly within the clauses, only these need to be represented using
the above.

We can now model an abstract stack, S’(mo,pco) =Ay -+ Ay, at address
(mo, pco) where A; = {a},...,al'} as follows:

S(mOapcOa [0]5 a%)/\ te /\S(mOapCOa [0]7 a{l)/\

S(m07p007 [TL - 1]3 a'}L)/\ cee /\S(mOapCOa [TL - 1]3 agzn)

Thus, the top of the stack is at position zero, [0], with the the rest of the stack
in the following positions.

Ownership. The owner cache is simply modeled as a binary relation, O(m, o), re-
lating a method m to an owner o thus representing o € O(m) Similarly the owner
field of an abstract object is modeled by another binary relation, H_-OWNER(r, o),
relating an object reference (in effect an object) to an owner, o which represents
o € H(r).owner.

The other components of the Flow Logic specification are modeled in a similar
manner.

6.3 Generating Constraints

As for the flow logic specification of the analysis, we only show a few represen-
tative cases for the constraint generation.

The constraint generation is specified as a relation, ~», between an instruction
(at a given address) and a clause in ALFP.

The putfield Instruction Storing values in instance fields is accomplished
by the putfield-instruction. Based on the analysis of the instruction (cf. Sec-
tion 4.3) we see that the value on top of the stack is copied into the field pointed
to by the reference found in the second position of the stack. Converting this to
constraints we get

Vr : Va : S(mg, pco, [1],7) A S(mo, pco, [0],a) = H(r, f,a)

Now the remainder of the stack, the original stack less the top two elements,
should be copied onwards to the next instruction:

Yy :Va:Vi:y=[i+ 2] AS(mg,pco,y,a) = S(mo,pco + 1,1, a)
None of the local variables were modified and should simply be copied onwards:

Va : Va : L(mg,pco, x,a) = L(mo,pco + 1, z,a)
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Combining the above constraints we can formulate the clause for putfield:

(mg,pco) : putfield f ~
Vr : Va : S(mg, pco, [1],7) A S(mo, pco, [0],a) = H(r, f,a)
Yy :Va:Vi:y=[i+ 2] AS(mg,pco,y,a) = S(mo,pco + 1,1, a)
Va : Va : L(mg,peo, x,a) = L(mo,pco + 1,z,a)

Finally, having generated the above constraints for the control flow and own-
ership analyses, we now generate an observation predicate which is a formalisa-
tion of the analysis checks described in Section 5 as an ALFP formula. Thus we
obtain an implementation where the verification of the analysis result is actually
carried out while computing the analysis result and thereby leveraging the effi-
ciency of the Succinct Solver technology; alternatively we could have computed
the result first and then carried out the verification at the possible cost of adding
further overhead.

The observation predicate below will check if the instruction in question can
possibly violate the firewall rules and if so it records the addrss of the potential
violation in an auxiliary relation called ALERT:

Vr : S(mo, peo, [1],7) =
(3z3y : O(mo,z) Ax # JCREA x # y A H.OWNER(r,y)) =
ALERT (mo, pco)

Once the solver has found a solution all that remains is to extract the list of
addresses of potential violations and present them to the user. Of course more
information than merely the address can be recorded, eg. exactly which owner
contexts gave rise to a potential violation; what additional information will prove
to be most useful can only be discovered by experimentation.

The invokevirtual Instruction First the reference to the object where the
invoked method resides is copied (as a self reference) to local variable 0 of the
invoked method:

Vr¥muo : S(mo, peo, [|m|], r) A ML(m.id, r,mv) = L(mv,1,var0,r)

Next the parameters are transferred from the stack of the current method to the
local variables of the invoked method:

Vr¥maoVa : S(mg, peo, [|ml|], 7) A ML(m.id, r, mv)A
S(mo, pco, [0],a) = L(mw,1,var_1,a)

Vr¥maVa : S(mg, peo, [|ml|], 7) A ML(m.id, r, mv)A
S(mg, pco, [|m| — 1],a) = L(mw,1,var_|m|,a)
And then the ownership information is copied forward:
VrymaYo : S(mo, peo, [|m|], r) A ML(m.id, r, mv)A
H_OWNER(r,0) = O(muv, o)
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In case the method returns a value, that value should be put on top of the
stack for the next instruction, and the rest of the current stack, less the argu-
ments to the invoked method, is also copied forward. Thus if m.returnType #
void then the following constraints are generated:

Yy :Vz:Va:Vi:

y=1[i+|m|+1]Az=1[i+ 1] AS(mo,pco,y,a) = S(mog,pco + 1, z,a)
VrymoVendmoVa : S(mo, peo, [[m|], ) A ML(m.id, r, mv)A

END(muv, endmuv) A S(mw, endmuv, [0],a) = S(mo, pco + 1,[0],a)

If on the other hand the invoked method does not return a value, then only the
current stack, less the arguments to the invoked method, is copied forward. Thus
if m.returnType = void then the following constraints are generated:

Vy :Va:Vi:y=li+|m|+ 1] AS(mo,pco,y,a) = S(mo,pco + 1, [i], a)

Finally, since the local variables of the invoking method are not modified, they
are simply copied along as well:

VaVa : L(mo, pco, z,a) = L(mog,peo + 1,2, a)

As for putfield we construct an observation predicate for invokevirtual
along the same lines:

Vr S(m()vpCOv [|m|],7") =
(3z3y : O(mo,z) Ax # JCREA x # y A H.OWNER(r,y)) =
ALERT (mq, pco)

6.4 Solving the Constraints

Once the constraints are generated for all the instructions, all that remains is to
solve them. As mentioned earlier an efficient solver, called Succint Solver, has
been implemented by Seidl and Nielson. We shall not go into more detail here,
merely refer to [10, 11] for more information.

6.5 The Prototype

A prototype tool for parsing Carmel programs, generating constraints as dis-
cussed in this section and interfacing with the Succinct Solver has been im-
plemented. At the moment the tool simply presents the analysis result in its
entirety, however, work on a better presentation based on the program source
and using syntax colouring and hyperlinks is under way.

7 An Example
In Figure 1 a small Carmel example program is shown. The program defines

two classes: Account and Bad. The Account class is intended as a (very) simpli-
fied version of an electronic purse with only two methods: credit that checks
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class Account {
void credit (int) {

class Bad {
void steal (void) {

/* Do some checking... */ getstatic Account.leak
load 0 dup 1 0
load 1 getfield Account.balance
invokevirtual Account.add push 5000
return numop add
} invokevirtual Account.add
void add (int) { return
load 1 }
getfield this Account.balance }
numop add
putfield this Account.balance
return
}
}

Fig. 1. Example Carmel Program

and validates crediting an account and add that does the actual update of the
balance.

The Bad class is intended as a (very) simplified attacker that credits an ac-
count with 5000 units, bypassing the sanity checks. We assume that an object
reference to the account is leaked through a static field in the Account class,
called leak. The firewall cannot detect and stop access through static fields
since they have no owners. However, when the Bad class tries to access the ac-
count and get the balance, this is in violation with the firewall policy. Likewise
the invocation of the add method is also in violation with the firewall policy.
Figure 2 shows the constraints generated for the invokevirtual Account.add
instruction in the steal method of class Bad and Figure 3 the generated obser-
vation predicate for that instruction.

(A r. S(cl_Bad,steal,pc_6,suc(zero),r) =>
L(r,add,pc_1,var_0,r)) &

(A r. A a. S(cl_Bad,steal,pc_6,suc(zero),r) &
S(cl_Bad,steal,pc_6,zero,a) => L(r,add,pc_1,var_1,a)) &

(A x. Ai. A a. x = suc(suc(i)) & S(cl_Bad,steal,pc_6,x,a) =>
S(cl_Bad,steal,pc_7,i,a)) &

(A x. A a. L(cl_Bad,steal,pc_6,x,a) => L(cl_Bad,steal,pc_7,x,a))&

(A r. A o. S(cl_Bad,steal,pc_6,suc(zero),r) & OWNER(r,o) =>
0(r,add,o))

Fig. 2. Constraints generated for invokevirtual Account.add in method steal
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(A r. ((S(cl_Bad,steal,pc_6,suc(zero),r)) =>
((E x. (Evy.
((0(cl_Bad,steal,x) & (x '= c1_JCRE) &
(x '=y) & (OWNER(r,y)))))) => (ALERT(cl_Bad,steal,pc_6)))))

Fig. 3. Observation predicate generated for invokevirtual Account.add in method
steal

Since we are not modelling the JCRE we must explicitly set up the initiali-
sation otherwise done by the JCRE:

OWNER(cl_Account,0OWN_bank) &
OWNER(cl_Bad,0OWN_hacker) &
0(cl_Account,credit,OWN_bank) &
0(cl_Account,add,0WN_bank) &
0(cl_Bad,steal,0OWN_hacker)

The above contraints correspond to installing an application owned by bank and
having only one class, namely Account, with two methods: credit and add,
and then installing another application owned by hacker consisting of the class
Bad with only one method steal. These initialisation constraints could easily
be computed automatically, but they are only necessary when the JCRE is not
modelled explicitly. The constraints given here assume that all methods in all
classes can be invoked from “the outside” and so is a safe approximation of the
actual call-patterns.

Finally, in Figure 4 the result of solving the constraints is shown, namely
the ALERT relation. The analysis finds two possible breaches of the firewall rules,

Relation ALERT/3:
(c1_Bad, steal, pc_6), (cl_Bad, steal, pc_3),

Fig. 4. Solution for invokevirtual Account.add in method steal

both in method steal of class Bad, in program line three and six respectively,
corresponding to the getfield and invokevirtual instruction.

Even though the analysis decsribed in this paper is rather imprecise, we
belive it is sufficient for JavaCard programs that follow the current practices.
In particular, most JavaCards do not (yet) have a garbage collector and thus
all memory allocation is done in the initialisation phase and only rarely are
classes instantiated more than once. This justifies our abstraction of objects into
classes and also the rather simple notion of ownership. In the future this may
well change and then the analysis might not be precise enough, however, by
adding more information to the abstract object references, eg. adding ownership
information, we believe that sufficient precision can be achieved.
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8 Conclusion and Future Work

In this paper we have shown how a prototype tool for validating JavaCard pro-
grams has been constructed by extending an existing control flow analysis with
ownership information. From this extended analysis a constraint generator for
the Succint Solver was systematically derived and it was discussed how verifi-
cation checks are formalised, also as constraints, and verified by the Succinct
Solver. We believe that such a tool will be very useful, in particular for de-
velopers, for ensuring the robustness of their programs and also for increasing
confidence in the security behaviour of their programs.

Work on extending and consolidating the ideas in this paper is already un-
derway mainly with respect to adding support for sharable objects (including
stack inspection) and entry points. As noted various places in the paper, there
are no conceptual difficulties in supporting sharable objects, entry points and
stack inspection and requires only a few modifications.

Another direction, where work is also underway, is to make the tool more user
friendly, in particular regarding the presentation of the analysis result. Here a
number of possibilities are being considered and tested.

Finally we would like to investigate how well the approach scales to “real-
world” JavaCard programs. While the current prototype is a rather naive im-
plementation of the analysis we believe that by employing different optimisation
strategies, discussed in [1, 6,10, 11], we can achieve the desired scalability. Anec-
dotal evidence based on experiments with a similar constraint generator (only
for control flow analysis), seems to indicate that time complexity will be less of
an issue than space consumption, indeed constraint generation and solution for
a program of a few thousand lines only takes around 30 seconds. In [6] a number
of ideas for reducing space consumption is described. Furthermore, even real-
world JavaCard programs are of (relatively) small size which of course makes
them even more amenable to using formal methods for validation. Even so, in
anticipation of future needs work should be done on investigating various ways
of modularising and partitioning analyses so that analysis of a system might
be done in a stepwise fashion. For applets that do not communicate via shared
objects such partitioning should be fairly straightforward. For applets that do
communicate, analyses for determining communication interfaces is needed; ear-
lier work on “hardest attackers” for mobile ambients, cf. [9], may be a suitable
basis for such work.
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