Data Structures in the Succinct Solver (V1.0)

Authors : Hongyan Sun, Hanne Riis Nielson and Flemming Nielson
Date : November 11, 2002
Number : SECSAFE-IMM-005-1.0

Classification : Public

Abstract.

This report documents our recent study and experiment with data
structures used in the succinct solver. The succinct solver incorporates
state-of-the-art approaches to constraint solving and solves static analysis
problems specified in Alternation-free Least Fixed Point Logic (ALFP).
In previous studies and experiments with the solver, we have observed
that minor syntactical variations of formulas have a strong impact on
the efficiency of computation, and tuning of the analysis can be achieved
by tuning of formulas in many circumstances. We have also gained some
insights into which formulations are better than the others in the sense
that the solver can give a better performance. In this study, we aim on one
hand at gaining insights into the internal behaviour of the solver to explain
why some formulations are better than the others, and to enhance our
expertise in tuning clauses to use the solver efficiently. On the other hand,
we aim at being capable to enrich and improve the solver with desired
features so that real applications such as the security analysis of Carmel
can be solved efficiently considering both time and space efficiency. In
this report, we use an example, reaching definitions analysis of a factorial
program written in the WHILE language, to discuss and illustrate how the
data structures are constructed and expanded with the evolution of the
solving processes of the solver.

1 Introduction

Program analysis can often be carried out in a two-phase process [1]. In the first
phase, the focus is on the specification of the analysis, and where the analyzed
program is transformed into a suitable set of constraints. In the second phase,
the main concern is the computation of the analysis, and where the constraints
are solved by employing an appropriate constraint solver. Here, we consider the
succinct solver developed by Nielson and Seidl [2] as such a constraint solver.
The succinct solver uses the Alternation-free Least Fixed Point Logic (ALFP)
in clausal form as the constraint specification language. This specification logic
is more expressive than that either in BANE or in Datalog as pointed in [2].
Formulas in ALFP naturally arise in the specification of static analyses of pro-
grams (c.f. [3] and [4]). On the other hand, the algorithm in the solver allows to
be formulated in a succinct manner due to the use of continuation and memoi-
sation. Thus the behaviour of the solver can be characterized precisely and the
complexity analysis can be developed formally and automatically as shown in [3]
and [5]. I addition, computing the solution in the solver boils down to computing
the desired model of a formula. Previous experiences with the solver in [2, 3, 6]
report that minor syntactical variations of formulas have a strong impact on the

efficiency of computation, and tuning of the analysis can be achieved by tuning
of formulas in many circumstances.

By the experiments with various transformations of formulas together with
the associated time complexities as described in [2, 6], we have gained some
insights into which formulations are better than the others in the sense that the
solver can give a better performance. In this report, we document our recent
study and experiment with data structures implemented in the succinct solver of
version 1.0'. We aim on one hand at gaining insights into the internal behaviour
of the solver to explain why some formulations are better than the others, and
to enhance our expertise in tuning clauses to use the solver efficiently. On the
other hand, we aim at being capable to enrich and improve the solver with our
(or users) desired features so that real applications such as the security analysis
of Carmel [7] can be solved efficiently considering both time and space efficiency.

We have focused so far on how the data structures are constructed and
expanded with the evolution of the solving processes of the solver. The prelim-
inary data obtained so far from the study bring us some interesting discussions
on improving the solver, which will be reported in this document.

The remainder of the report is organized as follows: in section 2, we briefly
give the syntax and the semantics of the ALFP logic that is used by the solver as
the specification logic. In section 3, we give an overview of the solver by sketching
the main program structure and data structures. We explain and illustrate, in
section 4, how the solver processes clauses and manipulates the data structures
by means of an example, reaching definitions analysis of a factorial program
written in the WHILE language [8]. Finally, in section 5, we conclude the report
with some discussions on the further improvement of the solver.

2 ALFP in brief

The specification logic used in the succinct solver is the alternation-free fragment
of Least Fixed Point Logic (ALFP), which is an extension of Horn Clauses. In
this section we give a brief introduction to ALFP in terms of the syntax and
the semantics.

2.1 Syntax

Assume we are given a fixed countable set X of (auxiliary) variables and a finite
ranked alphabet R of predicate symbols. Then the set of clauses, cl, is given by
the following grammar

pre = R(z1,---,2x) | —R(z1,---,zr) | Dpre; Apre
| pre; Vpre, | 3dx:pre | Vzx:pre

cl n= R(zy,---,2k) | 1 | chA ch
| pre => ¢l | Vz:cl

where R € R is a k-ary predicate symbol for k¥ > 1, z,z1,--- € X denote ar-
bitrary variables, and 1 is the always true clause. Occurrences of R(---) and
—R(---) in pre-conditions are also called queries and negative queries, respec-
tively, whereas the other occurrences are called assertions of the predicate R.

!The version as of September 2002. We refer to it throughout this report.

SECSAFE-IMM-005-1.0 2

(p,0) E R (1,) i (0(21),---,0(2k)) € p(R)

(p,0) E ~R (21, mp) i (0(21),--- ,0(2k)) € p(R)

(p,0) |= pre; A pre, iff (p,0) = pre; and (p,0) |= pre,
(p,0) |= pre; V pre, iff (p,0) = pre; or (p,0) = pre,
(p,o) E 3z : pre iff (p,o[z — a]) = pre for some a € U
(p,0) |E Vz : pre iff (p,o[z > a]) Epre forallaeld
(p,0) E Ry,) i (0(21),--- ,0(2k)) € p(R)

(p,0) E1 always

(p,0) E ch Ack it (p,o)=ch and (p,0)Ech
(p,0) E pre = ¢l it (p,0) = cl whenever (p,0) |= pre
(p,0) EVz: cl ifft (p,o[z—a])Ecl forallael

Table 1: Semantics of pre-conditions and clauses

In order to deal with negations conveniently, we restrict ourselves to alternation-
free formulas. We introduce a notion of stratification similar to the one which
is known from Datalog [9, 10]. A clause cl is an alternation-free Least Fizpoint
formula (ALFP formula for short) if it has the form ¢l = ¢l A --- A clg, and
there is a function rank : R — N such that for all j = 1,--- ,k, the following
properties hold:

e all predicates of assertions in cl; have rank j;
e all predicates of queries in cl; have ranks at most j; and

e all predicates of negated queries in cl; have ranks strictly less than j.

2.2 Semantics

Given a non-empty and countable universe U of atomic values (or atoms) to-
gether with interpretations p and o for predicate symbols and free variables,
respectively, we define the satisfaction relations

(p,o) Epre and (p,0) = cl

for pre-conditions and clauses as in Table 1. Here we write p(R) for the set of
k-tuples (ai,--- ,ax) from U associated with the k-ary predicate R, we write
o(z) for the atom of & bound to z and finally o[z — a] stands for the mapping
that is as o except that x is mapped to a.

In the sequel, we view the free variables occurring in a formula as constant
symbols or atoms from the finite universe U/. Thus, given an interpretation og
of the constant symbols, in the clause cl, we call an interpretation p of the
predicate symbols R a solution to the clause provided (p,oq) = cl.

3 Overview of the succinct solver

The succinct solver is implemented using NJ/SML featured with modular struc-
tures, continuations, and memoisations. In this section, we give an overview of

SECSAFE-IMM-005-1.0 3

i Hornlnput clause

FrontEnd.parseCluase

HornPlus clause

universe, relTab, al, n

Trans.trandate

al,n Horn clause
A 4 A

result Horn cl auie
Output Solve.solve | HornEnvPool.addPools
/ ! N T
A i “HornEnvPool clause |
/’ i N :
1
env infl re&ﬂt ——————————— -
(memoi sation)

Fig. 1: The program structure

the solver by sketching the program structure and data structures, and explain-
ing briefly functionalities of the main functions.

3.1 Program structure

The program structure of the solver is sketched in Fig. 1. The various stages
will be exemplified in section 4.

In Fig. 1, the function parseClause in the module FrontEnd parses the ALFP
clause from the text file (we shall call it as HornInput clause hereafter), and
transforms it into an internal representation, HornPlus clause. The function
translate in the Trans module translates the HornPlus clause into another in-
ternal representation, Horn clause. The main goal of this is to transform the
atoms and predicate symbols into integers. At the same time, it extracts the
useful static information into the internal data structures, i.e. universe, relTab,
all and n respectively. Here, universe contains the information about the finite
universe of atoms, and relTab holds the information about the predicates. Each
integer in the integer list all represents an atom from the universe, whereas
integer n represents the number of the predicates in relTab.

The information in universe, relTab, all and n are used by the Output module
to produce the final output. The information in ell and n together with Horn
clause are used by the solve function in the Solve module to compute the solution
to the clause.

The function solve first transforms Horn clause into the internal representa-
tion, HornEnvPool clause, for the purpose of the memoisation (c.f. [2]) in the
case that disjunctions or existential quantifications are used in preconditions. It
then processes the HornEnvPool clause and computes the solution by manipu-
lating three main data structures, i.e. env for the partial environment, result for

SECSAFE-IMM-005-1.0 4

the solution, and infl for the consumer registration. We will discuss the solve
function in more detail in section 4.3.

3.2 Data structures

The data structures enw, result, and infl in the solver are abstracted as SML
data types as follows:

type env = (var * (univ option)) list

type result = univ list option stack * table

type ’a stack = (int x ’a array) ref

type table = {buckets: ((loc, univ) * loc) list array ref,
hash: ((loc, univ) — <dz) ref,
count: int ref}

type infl = consumer list option stack x table
type consumer = univ list — unit

Where, var corresponds to variables, univ corresponds to the universe of
atoms, loc the locations in the stack, and idz the locations in the buckets (i.e.
the hash table). These are all of int type in the implementation (c.f. Appendix
A). The int in stack corresponds to the size of the stack, while int in count the
number of elements in the buckets of the table.

The type declarations for env, result and infl in the implementation of the
solver are given in Appendix A.

Definition 1. A prefix tree is a rooted tree. It is used to represent an n-ary
relation R on a given finite universe Y. Each path of the tree represents a tuple
(a1,...,a,) € R. Along a path from the root node to the leaf node, each edge
between any two nodes (i.e. a parent node and its child node) is respectively
labeled with ay,..., a, for (a1, ...,a,) € R. Given a node v; and its child node
v; in the prefix tree, if the edge between them is labeled with a, then we say v;
prefixes the subtree rooted on v; by a, and shortly, v; prefixes v; by a.

Ezample 1. A 2-ary relation R = {(a,a), (a,b), (b,c)} is represented by a prefix
tree shown in Fig. 2.

3.2.1 The result data structure.

The result data structure implements a set of prefix trees as illustrated in Fig. 3.

In Fig. 3, the stack associates with an attribute m, which denotes the size of
the stack. The table associates with two attributes hash and count, which are
respectively the hash function and the number of elements in the buckets of the
table.

A slot in the stack corresponds to a node in a prefix tree. The first n slots
in the stack corresponds to the root nodes of n prefix trees. The content of
the slot can be NONE, SOME][] or SOME [by, ..., b;]. Here, NONE denotes an
uninitialized node, SOME [] denotes a leaf node, and SOME [by, ..., b;] denotes
a node that prefixes its 4 (¢ > 1) child nodes by by,...,and b; respectively. In the

SECSAFE-IMM-005-1.0 5

Fig. 2: A prefix tree representing a 2-ary relation R

case of Fig. 3, SOME [a, b] in slot 0 denotes that the root node of the prefix
tree for R prefixes its two children by a and b respectively.

An element ((v1, @), v2) in the buckets corresponds to an edge between two
nodes v; and vy such that v, prefixes v by a. Here, v; and vy are the slot
locations in the stack.

The buckets constitute a hash table. The hash function takes the pair (v1, a)
as the input and produces the hash value as the index of the buckets. Therefore,
each slot in the buckets may be hashed into more than one elements. To resolve
the collisions, we define that a slot of the buckets contains a list of elements.

m-1 hash + count

k-1
SOME[a |4 |

n1| NONE

root nodes for 0l SOME [a, b]

g i <
n predicaes e =T
p e stack \ S~

Fig. 3: The result data structure

Ezxample 2. Three prefix trees representing three relations, i.e. 1-ary relation R,
2-ary relation P, and undefined relation @), are implemented by result as shown
in Fig. 4.

SECSAFE-IMM-005-1.0 6

R

p
(0) @ ©(2)
e:/\; b
5
® @ ¢/ ©®
®)

me)l
6| SOME(] ?/K@
5| somE[q (1, B)5)]
4| SOME[] |¢—]
3| SOME[] le¢—])
2| NONE
1| SOME [b] ‘/ [(©.b). 4 /
ol SOME [a.b] ‘QJW 2.3/
stack
table

Fig. 4: The three prefix trees in result

3.2.2 The infl data structure.

Fig. 5 illustrates the data structure infl, which again implements a set of prefix
trees as that in result. But it differs from result in that each slot of the stack con-
tains information about consumers (c.f. [2]). A consumer is constructed when the
current computation can not be completed for the lack of information. The solver
suspends the computation by saving the necessary context as the consumer, and
resumes the computation when the expected information is obtained. In Fig. 5,
SOME [csm] in slot 0 in the stack means that one consumer (denoted by csm)
is registered in the root node of the prefix tree for R, whereas NONE in a slot
means that no consumer is registered in the corresponding node.

4 Reaching definitions analysis using the solver

In this section we use an example to explain and illustrate how the solver works,
in particular in manipulating data structures, to derive the final solution. The
example we are using is a reaching definitions (RD for short) analysis of a small
program taken from the book [8] as:

[y :=a]'; [z := 1] while [y > 1] do ([z:= 2 xy)*; [y ==y — 1]°); [y := 0°

This program is written in the WHILE language. It calculates the factorial
of the number stored in z and saves the result in z. The number outside the
brackets [] is the label of the elementary block embraced in the brackets.

In reaching definitions analysis, we are interested in which assignment may
reach which program point (namely entry point and exit point of each elementary
block). The analysis for the WHILE language is given in Table 2.2 in the book
[8]. What we do here is to transform the analysis in terms of ALFP clausal form
(i.e. HornInput clause) as shown in Fig. 6.

SECSAFE-IMM-005-1.0 7

m
m-1 hash + count
k-1
NONE [¢ |
n1| NONE
root nodes for o] SOME [csm i 1:2)s Vo
desf ¢ v\' [((v..a) v,)]
edicat e S
n predicates o ook ~_
///, c
1
table P
Fig. 5: The infl data structure
INIT(L1) &

FVAR(x1) & FVAR(z1) & FVAR(y1) &

FLOW(L4,L5) & FLOW(L3,L4) & FLOW/(L5,.3) & FLOW(L3,L6) & FLOW(L2,L3) &
FLOW(L1,L2) &

RDKILL(L1y1,labQ) & RDKILL(L1,y1,L1) & RDKILL(L1,y1L5) & RDKILL(L1y1,L6) &
RDKILL(L2,71,labQ) & RDKILL(L2,z1,L.2) & RDKILL(L2,z1,L4) & RDKILL(L4,z1,labQ) &
RDKILL(L4,21,L.2) & RDKILL(L4,z1,L4) & RDKILL(L5,y1,labQ) & RDKILL(L5,y1,L1) &
RDKILL(L5y1,L5) & RDKILL(L5y1,L6) & RDKILL(L6,y1,labQ) & RDKILL(L6,y1,L1) &
RDKILL(L6y1,L5) & RDKILL(L6,Y1,L6) &

RDGEN(L1,y1L1) & RDGEN(L2,71,2) & RDGEN(L4,z1,L4) & RDGEN(L5,y1,L5) &
RDGEN(L6,y1,L6) &

(A1 INIT(l) => (A x. FVAR(X) => RDIN(l, X, [abQ))) &
(ALLAX.AILAI2 (INIT()=> (RDOUT(IL, x, 12) & FLOW(IL, I) => RDIN(I, X, 12)))) &

(A1.Ax. AL (RDIN(, x, 1) & (! RDKILL(, x, 11)) [RDGEN (I, x, 11)) => RDOUT(l, x, 1))

Fig. 6: RD analysis for the factorial program in HornInput clause

Where, the predicate INIT defines the initial block, FVAR gives all the
variables used in the program, and FLOW defines all the pairs of blocks that
have an edge connected in the flow graph [8]. RDKILL defines all the assignments
that are killed by a block, e.g. a tuple (I1,z,l) € RDKILL means that at
block 1, an assignment to z at block l» is destroyed. RDKILL defines all the
assignments that are generated by a block, e.g. a tuple (I1,z,l2) € RDGEN
means that at block /7, an assignment to z at block I, is generated.

SECSAFE-IMM-005-1.0

The syntactical constructs for HornInput clause with comparison to that for
HornPlus clause will be given in Table 2.

In the following subsections, we will explain and illustrate how the solver
processes this clause in different stages as sketched in Fig. 1 and manipulates
result and infl to compute the final solution.

4.1 FrontEnd.parseClause

The function FrontEnd.parseClause parses the clause given in Fig. 6 and trans-
forms the clause into the internal representation, HornPlus clause, as shown in
Fig. 7.

Both (R(INIT,[Const L1]),
Both (R(FVAR,[Const x1]),Both (R(FVAR,[Const z1]), Both (R(FVAR,[Const y1]),

Both (R(FLOW,[Const L4,Const L5]),Both (R(FLOW,[Const L3,Const L4]),
Both (R(FLOW,[Const L5,Const L 3]),Both (R(FLOW,[Const L3,Const L6]),
Both (R(FLOW,[Const L2,Const L 3]),Both (R(FLOW,[Const L1,Const L2]),

Both (R(RDKILL,[Const L1,Const y1,Const |abQ]),Both (R(RDKILL,[Const L1,Const y1,Const L1]),
Both (R(RDKILL,[Const L1,Const y1,Const L5]),Both (R(RDKILL,[Const L1,Const y1,Const L6]),
Both (R(RDKILL,[Const L2,Const z1,Const 1abQ]),Both (R(RDKILL,[Const L2,Const z1,Const L2]),
Both (R(RDKILL,[Const L2,Const z1,Const L4]),Both (R(RDKILL,[Const L4,Const z1,Const 1abQ]),
Both (R(RDKILL,[Const L4,Const z1,Const L 2]),Both (R(RDKILL,[Const L4,Const z1,Const L4]),
Both (R(RDKILL,[Const L5,Const y1,Const |abQ]),Both (R(RDKILL,[Const L5,Const y1,Const L1]),
Both (R(RDKILL,[Const L5,Const y1,Const L5]),Both (R(RDKILL,[Const L5,Const y1,Const L6]),
Both (R(RDKILL,[Const L6,Const y1,Const 1abQ]),Both (R(RDKILL,[Const L6,Const y1,Const L1]),
Both (R(RDKILL,[Const L6,Const y1,Const L5]),Both (R(RDKILL,[Const L6,Const y1,Const L6]),

Both (R(RDGEN,[Const L1,Const y1,Const L1]),Both (R(RDGEN,[Const L2,Const z1,Const L2]),

Both (R(RDGEN,[Const L4,Const z1,Const L4]),Both (R(IRDGEN,[Const L5,Const y1,Const L5]),

Both (R(RDGEN,[Const L6,Const y1,Const L6]),

Both (Forall (0,implies (U (INIT,[Var 0]),Forall (1,implies (U (FVAR,[Var 1]),R(RDIN,[Var 0,Var 1,Const 1abQY)))))),

Both (Foral (2,Forall (3,Forall (4,Forall (5,/mplies (N (INIT,[Var 2]), Implies (And (U (RDOUT ,[Var 4 Var 3 Var 5]),
U (FLOW,[Var 4 Var 2])),R(RDIN,[Var 2Var 3,Var 5]))))))),

Forall (6,Forall (7,Foral (8,Implies (Or (And (U (RDIN,[Var 6,Var 7,Var 8]),N (RDKILL,[Var 6,Var 7Var 8])),
U (RDGEN,[Var 6,Var 7,Var 8])),R(RDOUT,[Var 6,Var 7,Var 8])))))))N)MMN)N)MNMMMMMNNNNN)

Fig. 7: RD analysis for the factorial program in HornPlus clause

The syntactical comparison between HornPlus clause (i.e. Fig. 7) and Horn-
Input clause (i.e. Fig. 6) is sketched in Table 2.

In Table 2, prd denotes a predicate symbol; args denotes a tuple of arguments
associated with a predicate; cly, cla or cl denotes a clause; pre;, pres, or pre
denotes a precondition; and x denotes a bounded variable.

4.2 Trans.translate

The function Trans.translate translates the clause given in Fig. 7 into the in-
ternal representation, Horn clause, where all the variables and atoms are repre-

SECSAFE-IMM-005-1.0 9

HornInput clause | HornPlus clause | legend

prd(args) R(prd, args) assertions

c & cly Both (cli, cl2) conjunctions in clauses

Az. cl Forall(z, cl) universal quantifications in clauses
pre = cl Implies(pre, cl) | implications

prd(args) U(prd, args) queries

Iprd(args) N(prd, args) negative queries

pre1 & pres And(pre1, prez) | conjunctions in preconditions

prei1 | pres Or(prei, pres) disjunctions in preconditions

Table 2: Syntactical comparison between HornInput clause and HornPlus clause

sented by integers as shown in Fig. 82.

Both (Both (R(0,[Const 0]),
Both (R(1,[Const 1]), Both (R(1,[Const 2]),Both (R(1,[Const 3]),

Both (R(2,[Const 4,Const 5]),Both (R(2,[Const 6,Const 4]),Both (R(2,[Const 5,Const 6]),
Both (R(2,[Const 6,Const 7]),Both (R(2,[Const 8,Const 6]), Both (R(2,[Const 0,Const 8]),

Both (R(3,[Const 0,Const 3,Const 9]), Both (R(3,[Const 0,Const 3,Const 0]),
Both (R(3,[Const 0,Const 3,Const 5]), Both (R(3,[Const 0,Const 3,Const 7]),
Both (R(3,[Const 8,Const 2,Const 9]), Both (R(3,[Const 8,Const 2,Const 8]),
Both (R(3,[Const 8,Const 2,Const 4]), Both (R(3,[Const 4,Const 2,Const 9]),
Both (R(3,[Const 4,Const 2,Const 8]), Both (R(3,[Const 4,Const 2,Const 4]),
Both (R(3,[Const 5,Const 3,Const 9]), Both (R(3,[Const 5,Const 3,Const 0]),
Both (R(3,[Const 5,Const 3,Const 5]), Both (R(3,[Const 5,Const 3,Const 7]),
Both (R(3,[Const 7,Const 3,Const 9]), Both (R(3,[Const 7,Const 3,Const 0]),
Both (R(3,[Const 7,Const 3,Const 5]), Both (R(3,[Const 7,Const 3,Const 7]),

Both (R(4,[Const 0,Const 3,Const 0]), Both (R(4,[Const 8,Const 2,Const 8]),

Both (R(4,[Const 4,Const 2,Const 4]), Both (R(4,[Const 5,Const 3,Const 5]),

Both (R(4,[Const 7,Const 3,Const 7]),

Both (Forall (0,implies (U(0,[Var O]),Foral (1,Implies (U(1,[Var 1]),R(5,[Var 0,Var 1,Const 9]))))),

Both (Forall (2,Forall (3,Forall (4,Foral (5,Implies (N(O,[Var 2]),
Implies (And (U(6,[Var 4,Var 3Var 5]),U(2,[Var 4 Var 2])),R(5,[Var 2Var 3Var 5]))))))),

Forall (6,Forall (7,Forall (8,Implies (Or (And (U(5,[Var 6,Var 7,Var 8]),N(3,[Var 6,Var 7,Var 8])),
U4[Var 6 Var 7,Var 8])),R(6,[Var 6,Var 7,Var 8])))))))NNNNNNINMMMMM).

One)

Fig. 8: RD analysis for the factorial program in Horn clause

At the same time, it extracts the static information as given in Fig. 9. In the
figure, the relTab gives the information about predicates by means of the pred-
icate symbol and the associated arity, e.g. INIT/1 denotes the 1-ary predicate
INIT.

2The true clause One is added in the last line to ease the construction of clauses
in the implementation. It is removed later on as shown in Fig. 11.

SECSAFE-IMM-005-1.0 10

-
[&)]

relTab:

INIT/1
FVAR/1
FLOW/2
RDKILL/3
RDGEN/3
RDIN/3
RDOUT/3

al: [0,1,2,3,4,5,6,7,8,9]
n 7

Fig. 9: Extracted static information

4.3 Solve.solve

The function Solve.solve does mainly three tasks. It first initializes the two data
structures result and infl. It secondly calls the function HornEnvPool.addPools
to add pools for the memoisation of the disjunctions and existential quantifica-
tions in preconditions. It then processes all the sub-clauses and preconditions of
the input clause to compute the solution.

4.3.1 Initializing result and infl.

Fig. 10 illustrates the initial states of result and infl. In both cases, the length
of either the stack or the buckets is 7, as there are 7 predicates (as indicated in
n in Fig. 9) in the clause. Each slot in the stack is initialized as NONE, while
each slot in the buckets is initialized as empty list []. The number of elements
indicates the number of edges in the set of prefix trees implemented by either
result or infl.

4.3.2 Calling HornEnvPool.addPools.

To achieve efficiency, the solver uses the memoisation technique to deal with dis-
junctions or existential quantifications in preconditions. The function addPools
transforms the Horn clause into an internal representation, HornEnvPool clause,
as illustrated in Fig. 11 where the Or precondition has one more argument point-
ing to location 7 in the stack. The slot in location 7 is created by a push opera-
tion, and is used to save the partial environment (i.e. env) for the memoisation
purpose. Fig. 12 shows the modified result.

SECSAFE-IMM-005-1.0 11

result: infl:

Stack length: 7 Stack length: 7

Stack: Stack:

NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
Buckets length: 7 Buckets length: 7

Buckets [I [T 10011 Buckets: [1 (110001010

Number of elements: 0 Number of elements: 0

Fig. 10: Initial states of result and infl

Both (R(0,[Const 0]),
Both (R(1,[Const 1]), Both (R(1,[Const 2]), Both (R(1,[Const 3]),

Both (R(2,[Const 4,Const 5]), Both (R(2,[Const 6,Const 4]), Both (R(2,[Const 5,Const 6]),
Both (R(2,[Const 6,Const 7]), Both (R(2,[Const 8,Const 6]), Both (R(2,[Const 0,Const 8]),

Both (R(3,[Const 0,Const 3,Const 9]), Both (R(3,[Const 0,Const 3,Const 0]),
Both (R(3,[Const 0,Const 3,Const 5]), Both (R(3,[Const 0,Const 3,Const 7]),
Both (R(3,[Const 8,Const 2,Const 9]), Both (R(3,[Const 8,Const 2,Const 8]),
Both (R(3,[Const 8,Const 2,Const 4]), Both (R(3,[Const 4,Const 2,Const 9]),
Both (R(3,[Const 4,Const 2,Const 8]), Both (R(3,[Const 4,Const 2,Const 4]),
Both (R(3,[Const 5,Const 3,Const 9]), Both (R(3,[Const 5,Const 3,Const 0]),
Both (R(3,[Const 5,Const 3,Const 5]), Both (R(3,[Const 5,Const 3,Const 7]),
Both (R(3,[Const 7,Const 3,Const 9]), Both (R(3,[Const 7,Const 3,Const 0]),
Both (R(3,[Const 7,Const 3,Const 5]), Both (R(3,[Const 7,Const 3,Const 7]),

Both (R(4,[Const 0,Const 3,Const 0]), Both (R(4,[Const 8,Const 2,Const 8]),

Both (R(4,[Const 4,Const 2,Const 4]), Both (R(4,[Const 5,Const 3,Const 5]),

Both (R(4,[Const 7,Const 3,Const 7]),

Both (Forall (0,implies (U(0,[Var 0]),Forall (1,implies (U(1,[Var 1]),R(5,[Var O,Var 1,Const 9]))))),

Both (Forall (2,Forall (3,Forall (4,Forall (5,Implies (N(O,[Var 2]),
Implies (And (U(6,[Var 4 Var 3 Var 5]),U(2,[Var 4 Var 2])),R(5,[Var 2Var 3 Var 5]))))))),

Forall (6,Forall (7,Forall (8,Implies (Or (And (U(5,[Var 6,Var 7,Var 8]),N(3,[Var 6,Var 7,Var 8])),
U4 [Var 6,Var 7.Var 8]), 7),R(6,[Var 6,Var 7,Var 8]))))))))N)N)NNNNMNNNNNN))

Fig. 11: RD analysis for the factorial program in HornEnvPool clause

4.3.3 Solving clauses.

The main algorithm that the solve function uses to solve clauses is given in
Appendix B. The solve function is primarily composed of two functions i.e.
execute and check. The execute function deals with clauses, while the check
function deals with preconditions. In the followings we shall focus on those
clauses and preconditions occurred in Fig. 11 that are sensitive to the data
structures result and infl, meaning that by dealing with them the solve function
modifies the two data structures. We describe briefly the other clauses occurred

SECSAFE-IMM-005-1.0 12

result:
Stack length: 8

Stack:
NONE NONE NONE NONE NONE NONE NONE NONE

Buckets length: 7

Buckets: [] [] [1 [1 1 1]

Number of elements: 0

Fig. 12: The state of result after the call to addPools

in Fig. 11 when we come across them. For more detail descriptions about the
algorithm, we refer to [2].

execute(Both(cli, clz)) env. In the case of the conjunction in clauses i.e.
with the syntactical form Both(cly, cl2), the execute function executes two sub-
clauses cly and cly respectively under the same partial environment env. For
example, consider the first conjunction in line 1 of Fig. 11, the assertion R(0,
[Const 0]) is executed first, then the second conjunction in line 2 is executed.

execute(R(r, args)) env. To deal with an assertion R(r, args), where r is
an integer representing a predicate, and args is a list of arguments associated
with the predicate, the execute function considers two cases based on args:

1) All arguments in args are either constant values indicated by Const or
variables indicated by Var that have been evaluated in env. The execute func-
tion derives a tuple of integers (each represents an atom from the universe)
corresponding to args, and inserts the tuple into result (and at the same time
infl is also modified). For example, when R(0, [Const 0]) in line 1 of the clause
given in Fig. 11 is executed, the tuple [0] is derived and then inserted into result
as illustrated in Fig. 13.

Stack length: 9

Stack:
SOM E[] NONE NONE NONE NONE NONE NONE NONE SOME [0]

Buckets length: 7
INIT (0)

Buckets:
(oo nmnna 7/
Number of elements: 1 8)

Fig. 13: result after the execution of R(0, [Const 0])

In Fig. 13, the texts in bold font constitute the prefix tree (on the right
corner) for the predicate INIT. Where, again, NONE denotes the node unini-

SECSAFE-IMM-005-1.0 13

tialized so far. SOME [] denotes the leaf node, and SOME [0] denotes the node
that prefixes its child node by atom 0 (i.e. L1) from the universe. It needs to
mention that, hereafter, we shall use the notation (v;/a, v5) as an alternation
of the notation ((v1, a), v2) (c.f. Fig. 3) to denote an element in the buckets
(simply to get rid of many parentheses), e.g. (0/0,8) means the same as ((0, 0),
8). When the execution of R(1, [Const 1]) in line 2 of Fig. 11 is done, result is
modified as shown in Fig. 14.

Stack length: 10

Stack:
SOME [] SOME [] NONE NONE NONE NONE NONE NONE SOME [1] SOME [0]

Buckets length: 7
Buckets: INIT (0) FVAR(1)

(o8] T [911 *
L1 x1
Number of elements: 2 /

® ©

Fig. 14: result after the execution of R(1, [Const 1])

When R(4, [Const 7, Const 3, Const 7)) in line 16 in Fig. 11 is executed,
result is expanded as shown in Fig. 15, which corresponds to a set of prefix trees
illustrated in Fig. 16.

Stack length: 66

Stack:

SOME [] SOME [7] SOME [3] SOME [] SOME [5] SOME [3] SOME [] SOME [4] SOME [2] SOME []
SOME [8] SOME [2] SOME [] SOME [0] SOME [3] SOME [] SOME [] SOME [] SOME [] SOME [7,5,0,9]
SOME [3] SOME [] SOME [] SOME [] SOME [] SOME [7,5,0,9] SOME [3] SOME [] SOME [] SOME []
SOME [4,8,9] SOME [2] SOME [] SOME [] SOME [] SOME [4,8,9] SOME [2] SOME [] SOME [] SOME[]
SOME [] SOME [7,5,0,9] SOME [3] SOME [] SOME [8] SOME [] SOME [6] SOME [] SOME [] SOME [6]
SOME []SOME [7,4] SOME [] SOME [5] SOME [] SOME [] SOME [] SOME [] NONE NONE NONE
SOME [7,5,4,8,0] SOME [7,5,4,8,0] SOME [0,8,5,6,4] SOME [3,2,1] SOME [Q]

Buckets length: 112

Buckets:

[1 [(40/0,42)] [] [(58/4,59)] [] [(4/0,51)] [(40/5,43)] [] [(40/7,44)] [(51/3,52)(4/4,57)] [(40/9,41)(4/5,60)] []
[(7.63)] (@850 0000000001010 YL [(1/210)(55/856)] [(1/311)] [(19/6,20)] [] []
[(30/4,33)] [] [1 [(12/5,13)] [(30/8,32)] [(30/9,31)] [(23/3,24)(52/0,53)] [] [] [1 [(34/2,35)] [] [] [1 [(63/3,64)] []
[(16/6,17)(45/3,46)] [] [1[1 [1[1 [1 [[(2/0,21)] [] [] [] [(2/4,12)] [(2/5,16)] [(2/6,14)] [] [(2/8,19)] [(60/3,61)]
[(24/026)] [1 [1 [1 [1 [(24/5,27)] [] [(24/7,28)] [] [(24/9,25)(35/4,38)] [(46/0,48)] [] [] [(35/8,37)] [(35/9,36)]
[(46/5,49)(64/7,65)] [] [(46/7,50)(57/2,58)] [] [(46/9,47)] [(39/3,40)] [(3/0,23)] [1 [1 [] [(3/4,34)] [(3/5,39)]
{g;ﬁg%} {](3/7.45)] [(3/8,29)] [(14/4,15)] [[(61/5,62)] [(14/7,18)] [1 [1 [(54/2,55)] [1 [1 [1 [(0/0.8)] [1 [1 [1 (]
Number of elements: 58

Fig. 15: result after the execution of R(4, [Const 7, Const 3, Const 7))

2)The arguments in args contain variables that have not been evaluated in
env. The execute function constructs a list of tuples of integers by evaluating
such a variable with each atom of the universe respectively, and inserts each

SECSAFE-IMM-005-1.0 14

INIT (0) FVAR (1) FLOW (2)

L1 x1 1
®) ©) a0 (1)
RDKILL (3) RDGEN (4)
(51) (63)
y yi
(52) (64)
L6

(3 (56 (59) (62) (65

Fig. 16: Prefix trees after the execution of R(4, [Const 7, Const 3, Const 7))

tuple of atoms into result as in case 1. For example, if we have an assertion like
R(0, [Var Q]), which corresponds to INIT(z), and env = [], then the execute
function constructs a list of tuples as: [0], [1], [2], [3], [4], [5], [6], [7], [8], [9]. Each
element in the tuples denotes an atom from the universe. Each of the tuple is
respectively inserted into result.

execute(Forall(x, cl)) env. In the case of the universal quantification in the
clause, i.e. Forall(z, cl), the execute function introduces the new variable x by
extending env as (z, NONE)::env, here, NONE means that z is not binded by
any value yet. It then executes ¢l in the extended env. For example, when the
execute function processes the the first universal quantification in line 17 in
Fig. 11, i.e. Forall(0, Implies(U(0, [Var 0]), Forall(...))), here, we use ...to
denote the rest of the clause, it updates the env from env = [| to env=(z,
NONE). Afterwards, it processes the implication clause Implies(U(0, [Var 0]),
Forall(...)) under the new enuv.

execute(Implies(pre, cl)) env. To deal with the implication, i.e. Implies(pre,
cl), the execute function first calls the check function to check the precondition
pre. At the same time, it passes execute(cl) to the check function as the contin-
uation. If the precondition is true, the conclusion ¢l is executed. Otherwise, the
current execution terminates. Consider the same example I'mplies(U (0, [Var
0]), Forall(...)) as above, when the precondition U (0, [Var 0]) is true, the con-
clusion Forall(...)) is executed. Otherwise, there is no further execution.

SECSAFE-IMM-005-1.0 15

check(U(r, args), next) env. To deal with the query U(r, args), the check
function looks up the data structure result and derives a list of tuples associated
with the predicate r, and then unifies each tuple with args. If the unification is
successful, the solver will continue to work with the next clause or precondition
accordingly. To be efficient, the check function proceeds in three steps:

e Split args into two parts: prefixz and rest. The prefiz contains the first
part of args, in which all arguments are either of Const or Var that have
been evaluated in env. The rest contains the remains of args. For example,
the args in U(2, [Const 4, Var 0]), is split into prefiz = [4], and rest =
[Var 0].

e The list prefix is then used to look up result for a list of tuples, that have
such a prefix, associated with predicate r, and then each of the tuple is
used to unify with rest. For the previous example, if the prefix tree for
predicate 2 (i.e. FLOW) as shown in Fig. 16 contains only the most left
path, i.e. (L4, L5) € FLOW, in the current result, then list = [5], and the
atom 5 (i.e. L5) is used to unify with Var 0.

e In some situations, the query may not be satisfied with the current tuples
in result under the current env, but it may be satisfied when some new
tuples add into result. In this case, the solver adds a consumer into infl
so that the current computation can be resumed later when a new tuple
associated with the predicate is inserted into result.

Ezample 3. After the check of two queries U(0, [Var 0]) and U(1, [Var 1]) in
line 17 in Fig. 11, the modified infl together with the three lists, i.e. prefix,
rest and list, are illustrated in Fig. 17 and Fig. 18 respectively.

prefix: []

rest: [Var 0]

list of tuples with the prefix: [0]

Stack length: 65

Stack:

NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE SOME [c]

Buckets length: 112

Buckets:

[(29/4,32)] [1 [1 [(11/5,12)] [(29/8,31)] [(29/9,30)(4/0,50)] [(22/3,23)(51/0,52)] [] [] [(4/4,56)]
[(33/2,34)(4/5,59)] [] [(4/7,62)] [(4/8,53)] [(62/3,63)] [] [(15/6,16)(44/3,45)] [1 [1 (1 [1 [[1 [1 [1 [(1/1,8)]
[(1/2,9)] [(1/3,10)] [1[1 1 [1 01 [(59/3,60)] [(23/0,25)] [1 [[1 [1 [(23/5,26)] [] [(23/7,27)] []
[(23/9,24)(34/4,37)] [(45/0,47)] [] [] [(34/8,36)] [(34/9,35)] [(45/5,48)(63/7,64)] [] [(45/7,49)(56/2,57)] []
[(45/9,46)] [(38/3,39)] [(2/0,20)] [] [1 [1 [(2/4,11)] [(2/5,15)] [(2/6,13)(20/8,21)] [] [(2/8,18)] [(13/4,14)]
(1 [(60/5,61)] [(13/7,17)] [1 [1 [(53/254] (1 [1 [1 [1 (1 [1 [1 [1 [(28/2,29)] [] [] [(39/0,41)] [] [(57/4,58)] []
[(3/0,22)] [(39/5,42)] [] [(39/7,43)] [(3/4,33)(50/3,51)] [(3/5,38)(39/9,40)] [] [(3/7,44)] [(3/8,28)] [1 [1]

OO00000L©0n]1[(54/855)] (] [(18/6,19)] 1 [1
Number of elements: 58

Fig. 17: infl and the three lists after the check of U(0, [Var 0])

SECSAFE-IMM-005-1.0 16

In Fig.17, as in result, each slot in the stack corresponds to a node in a prefix
tree. The content in a slot is either NONE denoting a node without a consumer,
or SOME [¢y, ..., ¢;] denoting a node with ¢ (¢ > 1) consumers, i.e. ¢, ..., ¢;. Since
1, ---, ¢ each is merely used to denote the existence of a consumer, we shall use
the same notation c to denotes each of them. The solver will distinguish them.
The contents in the buckets are essentially the same as that in result. The main
difference is that in the stack of result, there are pools for the memoisation,
thus, the same node v in the prefix tree may be located in slot 4 in the stack
of result but in slot j in the stack of infl, assuming that ¢ # j. Therefore, the
contents in the buckets in Fig. 17 are different from that in Fig. 15 although
they contain the same prefix trees. It is also noticeable that the size of the stack
is 65 in Fig. 17 whereas 66 in Fig. 15 where slot 7 is used for the memoisation
as discussed in section 4.3.2.

prefix: []

rest: [Var 1]

list of tuples with the prefix: [3], [2], [1]

Stack length: 65

Stack:

NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE SOME [c] SOME [c]

Buckets length: 112

Buckets:

[(29/4,32)] [1 [] [(11/5,12)] [(29/8,31)] [(29/9,30)(4/0,50)] [(22/3,23)(51/0,52)] [] [] [(4/4,56)]
[(33/2,34)(4/5,59)] [] [(4/7,62)] [(4/8,53)] [(62/3,63)] [] [(15/6,16)(44/3,45)] [1 [1 [1 [1 [[] [1 [1 [(/1.8)]
[((1/2,9)] [(U3,10)] [1 [1 [1 [1 [] [(59/3,60)] [(23/0,25)] [] [] [] [] [(23/5,26)] [] [(23/7,27)] []
[(23/9,24)(34/4,37)] [(45/0,47)] [1 [] [(34/8,36)] [(34/9,35)] [(45/5,48)(63/7,64)] [] [(45/7,49)(56/2,57)] []
[(45/9,46)] [(38/3,39)] [(2/0,20)] [1 [1 [] [(2/4,11)] [(2/5,15)] [(2/6,13)(20/8,21)] [] [(2/8,18)] [(13/4,14)] []
((60/5,61)] [(13/7,17)] [1 (1 [(53254] [1 (1 11 [1 (111 [1 [1 [(28/2,29)] [] [] [(39/0,41)] [1 [(57/4,58)] []
[(3/0,22)] [(39/5,42)] [] [(39/7,43)] [(3/4,33)(50/3,51)] [(3/5,38)(39/9,40)] [] [(3/7,44)] [(3/8,28)] [] [1 [1 [1
(0000001007 [(54/855)] [11(18/6,19)] [1[]

Number of elements: 58

Fig. 18: infl and three lists after the check of U(1, [Var 1])

check(N(r, args), next) env. To deal with an negative query N(r, args),
the check function does three things:

e Construct a list vars from args which are not evaluated in env.

e For each z € vars, and each atom a € all, update env with a pair (z, a),
and eventually obtain a list envList of enwv.

e For each env € envList, construct a tuple of atoms by binding the vari-
ables in args with the values of the same variables in env, and check
whether such a tuple has already been in result. If the tuple is not in
result, the corresponding env is propagated to the next clause or precon-
dition accordingly.

Ezample 4. Consider the negative query N (0, [Var 2]), in line 18 in Fig. 11, the
vars and envList are illustrated in Fig. 19. Where, envList contains 10 envs

SECSAFE-IMM-005-1.0 17

by binding the variable 2 with value 0 to 9 (i.e. atom 0 to 9 from the universe)
respectively. The 10 tuples [0], [1], ..., [9] will be checked against the prefix tree
for predicate 0 (i.e. INIT) in result to see whether any of them has been in. It
finds out that [0] is in result, so that the last 9 envs will be propagated except
the first one.

vars: [2]

envList:

[(5,NONE), (4,NONE), (3,NONE), (2,SOME 0)], [(5,NONE), (4,NONE), (3,NONE), (2,SOME 1)],
[(5,NONE), (4,NONE), (3,NONE), (2,SOME 2)], [(5,NONE), (4,NONE), (3,NONE), (2,SOME 3)],
[(5,NONE), (4,NONE), (3,NONE), (2,SOME 4)], [(5,NONE), (4,NONE), (3,NONE), (2,SOME 5)],
[(5,NONE), (4,NONE), (3,NONE), (2,SOME 6)], [(5,NONE), (4,NONE), (3,NONE), (2,SOME 7)],
[(5,NONE), (4,NONE), (3,NONE), (2,SOME 8)], [(5,NONE), (4,NONE), (3,NONE), (2,SOME 9)]

Fig. 19: Outcomes from the check of N(0, [Var 2])

check(And(pre;, pres), next) env. In the case of the conjunction in the
precondition i.e. And(pre;, pres), the check function checks pre; under the en-
vironment env. At the same time it passes check(pres, next) as the continuation
of the check function that checks pre;. If pre; is true, pres is checked under
the environment propagated by the first check. Otherwise, no check on pre, is
needed, i.e. the current check terminates.

check(Or(pre;, pres, pool), next) env. In the case of the disjunction in the
precondition i.e. Or(pre;, pres, pool), the check function checks preconditions
pre; and pres respectively, and propagates the new env to the next clause or
precondition. To be efficient, if both checks produce the same env, the second
check does not need to consider the nezt, since it has been done once in checking
the first precondition. This can be achieved by the memoisation, which saves
the first env in the pool that is created in result previously, and when the second
env is generated, if it is the same as the first one, the check terminates.

Ezxample 5. Consider the Or precondition in line 19 in Fig. 11: Or(And(U(5, [Var
6, Var 7, Var 8)), N(3, [Var 6, Var 7, Var 8))), U4, [Var 6, Var 7, Var 8]), 7),
where the third argument, integer 7, points to the location in the stack of result.
When U(5, [Var 6, Var 7, Var 8]) is checked, the prefix tree for predicate 5
(i.e. RDIN) in result is as illustrated in Fig. 20.

After the check is done, the modified infl together with three lists i.e. prefiz,
rest and list are as shown in Fig. 21.

Thus, when the first tuple in list unifies with rest, the environment env =
[(8,9), (7, 1), (6, 0)], and it will not be modified by checking N(3,[Var 6, Var
7, Var 8])). This env is then saved in the pool that is rooted in location 7 of
the stack in result. When this env is added, result is modified as illustrated in
Fig. 22.

SECSAFE-IMM-005-1.0 18

Fig. 20: The current prefix tree in result for predicate RDIN

prefix: []

rest: [Var 6,Var 7,Var 8]

list of tuples with the prefix:

[0,1,9],[0,2,9], [0,3,9]

Stack length: 72

Stack:

NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE SOME [c,c,c,c,c,c,c,c.c] SOME [c]
NONE NONE NONE SOME [c] SOME [c]

Buckets length: 112

Buckets:

[(29/4,32)] [1 [1 [(12/5,12)] [(29/8,31)] [(29/9,30)(4/0,50)] [(22/3,23)(51/0,52)] [1 [] [(4/4,56)]
[(33/2,34)(4/5,59)] [] [(4/7,62)] [(4/8,53)] [(62/3,63)] [] [(15/6,16)(44/3,45)] [1[1 [1 [1 (1[I [1 [1 [(1/1.,8)]
[(1/2,9)] [(1/3,10)] [1 [1 [1 [1 [(66/9,67)] [(59/3,60)] [(23/0,25)] [] [(5/0,65)] [] [] [(23/5,26)] [] [(23/7,27)]
[1 [(23/9,24)(34/4,37)] [(45/0,47)(70/9,71)] [] [] [(34/8,36)] [(34/9,35)] [(45/5,48)(63/7,64)] []
[(45/7,49)(56/2,57)] [] [(45/9,46)] [(38/3,39)] [(2/0,20)] [1 [] [1 [(2/4,11)] [(2/5,15)] [(2/6,13)(20/8,21)] []
[(2/8,18)] [(13/4,14)] [] [(60/5,61)] [(13/7,17)] [1[] [(53/254] [1 [1 11 (111 [1 [1 [1 [(28/2,29)] [1 [1
[(39/0,41)] []1 [(57/4,58)] [] [(3/0,22)] [(39/5,42)] [] [(39/7,43)] [(3/4,33)(50/3,51)] [(3/5,38)(39/9,40)] []
[(3/7,44)] [(3/8,28)(68/9,69)] [1 [1 [1 [11 {11 111 [1 [(0/0,7)(65/1,70)] [(65/2,68)] [(54/8,55)(65/3,66)] []
[(18/6,19)1 1111

Number of elements: 65

Fig. 21: infl and three lists after the check of U(5, [Var 6, Var 7, Var 8])

More on execute(R(r, args)) env. Previously, when we discussed the ex-
ecution of the assertion R(r, args), we hided one important thing that the
execute function does. It is to resume the corresponding consumers when a new
tuple is added in result. If we consider the query U(6, [Var 4, Var 3, Var 5])
in line 19 in Fig. 11 as an example, when this query is checked, result contains
nothing about predicate 6 (i.e. RDOUT), therefore the check function suspends
the current computation and adds the consumer to infl for each env that is
propagated by checking N (0, [Var 2]) as we discussed before. Thus, there are 9
consumers registered in infl at location 6 in the stack, as already shown in Fig.
21.

When the assertion R(6,[Var 6, Var 7, Var 8]) in the last line in Fig. 11 is
processed, the first tuple [0, 1, 9] is inserted into result as illustrated in Fig. 23.

SECSAFE-IMM-005-1.0 19

Stack length: 76

Stack:

SOME [] SOME [0] SOME [1] SOME [] SOME [9] SOME [] SOME [9] SOME [] SOME [9]

SOME [1,2,3] SOME [] SOME [7] SOME [3] SOME [] SOME [5] SOME [3] SOME [] SOME [4]
SOME [2] SOME [] SOME [8] SOME [2] SOME [] SOME [0] SOME [3] SOME [] SOME []

SOME [] SOME [] SOME [7,5,0,9] SOME [3] SOME [] SOME [] SOME [] SOME [] SOME [7,5,0,9]
SOME [3] SOME [] SOME [] SOME [] SOME [4,8,9] SOME [2] SOME [] SOME [] SOME[]

SOME [4,8,9] SOME [2] SOME [] SOME [] SOME [] SOME [] SOME [7,5,0,9] SOME [3] SOME []
SOME [8] SOME [] SOME [6] SOME [] SOME [] SOME [6] SOME [] SOME [7,4] SOME []

SOME [5] SOME [] SOME [] SOME [] SOME [] SOME [9] NONE SOME [0] SOME [7,5,4,8,0]

SOME [7,5,4,8,0] SOME [0,8,5,6,4] SOME [3,2,1] SOME [0]

Buckets length: 112

Buckets:

[1 [(40/0,42)] [] [(58/4,59)] [] [(4/0,51)] [(40/5,43)] [] [(40/7,44)] [(51/3,52)(4/4,57)] [(40/9,41)(4/5,60)]
[1 [(4/7,63)] [(4/8,54)(69/9,70)] [1[1 [1 [(73/L,74)] [1 (111 [1 [1 [(66/1,71)] [(1/1,9)(66/2,69)]
[(1/2,10)(55/8,56)(66/3,67)] [(1/3,11)] [(19/6,20)] [1 [] [(30/4,33)] [] [] [(12/5,13)] [(30/8,32)]
[(30/9,31)(5/0,66)] [(23/3,24)(52/0,53)] [1 [1 [1 [(34/2,35)] [1 [1 [[(63/3,64)] []
[(16/6,17)(45/3,46)(74/0,75)] [1[1[1 [1 [1 [1 [1 [(2/0,21)] [1 [1 [] [(2/4,12)] [(2/5,16)] [(2/6,14)] []
[(2/8,19)(67/9,68)] [(60/3,61)] [(24/0,26)] [1 [1 [1 [1 [(24/5,27)] [] [(24/7,28)] [] [(24/9,25)(35/4,38)]
[(46/0,48)(71/9,72)] [1 [] [(35/8,37)] [(35/9,36)] [(46/5,49)(64/7,65)] [] [(46/7,50)(57/2,58)] [] [(46/9,47)]
[(39/3,40)] [(3/0,23)] [1[1 [1 [(3/4,34)] [(3/5,39)] [(21/8,22)] [(3/7,45)] [(3/8,29)] [(14/4,15)] [] [(61/5,62)]
[(14/7,18)] [1[1 [(54/2,55)] [1 [1 [1 [(0/0,8)] [[(7/9,73)] [1 [1 [(29/2,30)] []

Number of elements: 68

Fig. 22: Memoisation for the Or precondition

Stack length: 79

Stack:

SOME [] SOME [9] SOME [1] SOME [] SOME [0] SOME [1] SOME [] SOME [9] SOME []
SOME [9] SOME [] SOME [9] SOME [1,2,3] SOME [] SOME [7] SOME [3] SOME [] SOME [5]
SOME [3] SOME [] SOME [4] SOME [2] SOME [] SOME [8] SOME [2] SOME [] SOME [0]
SOME [3] SOME [] SOME [] SOME [] SOME [] SOME [7,5,0,9] SOME [3] SOME [] SOME []
SOME [] SOME [] SOME [7,5,0,9] SOME [3] SOME [] SOME [] SOME [] SOME [4,8,9] SOME [2]
SOME [] SOME [] SOME [] SOME [4,8,9] SOME [2] SOME [] SOME [] SOME [] SOME []
SOME [7,5,0,9] SOME [3] SOME [] SOME [8] SOME [] SOME [6] SOME [] SOME [] SOME [6]
SOME [] SOME [7,4] SOME [] SOME [5] SOME [] SOME [] SOME [] SOME [] SOME [9]
SOME [0] SOME [0] SOME [7,5,4,8,0] SOME [7,5,4,8,0] SOME [0,8,5,6,4] SOME [3,2,1] SOME [Q]
Buckets length: 112

Buckets:

[1[(40/0,42)] [] [(58/4,59)] [] [(4/0,51)] [(40/5,43)] [] [(40/7,44)] [(51/3,52)(4/4,57)]
[(40/9,41)(4/5,60)] [1 [(4/7,63)] [(4/8,54)(69/9,70)] [1 [1 [1 [(73/1,74)I [1 [1[1 [1 [1 [1 [(66/1,71)]
[(1/1,9)(66/2,69)] [(1/2,10)(55/8,56)(66/3,67)] [(1/3,11)] [(19/6,20)] [] [] [(30/4,33)] [] [] [(12/5,13)]
[(30/8,32)] [(30/9,31)(5/0,66)] [(23/3,24)(52/0,53)(77/9,78)1 [1 [1 [1 [(34/2,35)] [1 [1 [1 [(63/3,64)] []
[(16/6,17)(45/3,46)(74/0,75)] [1 [1 [1 [1 1 [1 [1 [(2/0,21)] [1 1 [] [(2/4,12)] [(2/5,16)] [(2/6,14)] []
[(2/8,19)(67/9,68)] [(60/3,61)] [(24/0,26)] [] [(6/0,76)] [] [1 [(24/5,27)] [] [(24/7,28)] []
[(24/9,25)(35/4,38)] [(46/0,48)(71/9,72)] [1 [] [(35/8,37)] [(35/9,36)] [(46/5,49)(64/7,65)] []
[(46/7,50)(57/2,58)] [] [(46/9,47)] [(39/3,40)] [(3/0,23)] [] [1 [] [(3/4,34)] [(3/5,39)] [(21/8,22)]
[(3/7,45)] [(3/8,29)] [(14/4,15)] [] [(61/5,62)] [(14/7,18)] [] [1 [(54/2,55)] [[1 [1 [(0/0,8)] [] [(7/9,73)]
[1 [1[(29/2,30)(76/1,77)] []

Number of elements: 71

Fig. 23: result after inserting a tuple associated with predicate RDOUT

When the insertion is done, the execute function constructs a list of con-
sumers associated with predicate 6 (i.e. RDOUT), and resumes all the compu-
tations that were suspended before.

SECSAFE-IMM-005-1.0 20

The solution. The solution generated by the solver to the reaching definitions
analysis for the factorial program is exactly the same as that given in the book
[8]. The Output module prints out the solution as shown in Appendix C. The
final data structures result and infl are given in Appendix D and E respectively.

5 Conclusion

We have gained some insights into both the internal data structures and the in-
ternal behaviour of the succinct solver, which enhances our confidence in tuning
clauses for using the solver efficiently. Concerning the solver as a general tool
for solving static analysis problems specified in ALFP, we consider the future
work to improve the solver in the following aspects:

e Provide more flexible API (application programmer interface) to facilitate
both new users and experts in various analyses phases.

e Support directly a universe of terms in a free algebra to release the current
restrictions on the universe of atoms and ground terms.

e Enhance the space efficiency of the solver so that some of the design choices
in favour of time efficiency over space efficiency can be improved.

e Reuse the result from the previous solving to deal with a notion of iterative
program analysis developed for security analyses in the context of mobility.

We are working towards these improvements of the solver.

SECSAFE-IMM-005-1.0 21

References

1]

2]

(3]

[4]

[5]

[6]

[7]

[9]

[10]

H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach to
static analysis. To appear in the book The Essence of Computation: Complezity,
Analysis, Transformation, published as LNCS 2566, Springer Verlag, 2002.

F. Nielson, H. Seidl, and H. Riis Nielson. Succinct Solvers. To Nordic Journal of
Computing, 1997.

F. Nielson and H. Seidl. Control-Flow Analysis in Cubic Time. In The 10th Eu-
ropean Symposium on Programming (ESOP). LNCS 2028, Springer Verlag, 2001.

David McAllester. On the Complexity Analysis of Static Analysis. In The 6th
Static Analysis Symposium (SAS). LNCS 1694, Springer Verlag, 1999.

F. Nielson, H. Riis Nielson, and H. Seidl. Automatic Complexity Analysis. In The
11th European Symposium on Programming (ESOP). LNCS 2305, Springer Verlag,
2002.

M. Buchholtz, H. Riis Nielson, and F. Nielson. Experiments with Succinct Solvers.
Technical Report IMM-TR-2002-4, IMM, DTU, 2002.

René Rydhof Hansen, F. Nielson, and H. Riis Nielson. Security Analysis for
Carmel. In VeriSafe Workshop, 2002.

F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis.
Springer Verlag, 1999.

A. Chandra and D. Harel. Computable Queries for Relational Data Bases. Journal
of Computer and System Sciences, 25(2), 1980.

K. Apt, H. Blair, and A. Walker. Towards A Theory of Declarative Programming.
In J. Minsker, editor, Foundations of Deductive Databases and Logic Programming.
Morgan-Kaufman, 1988.

SECSAFE-IMM-005-1.0 22

Appendix A. Type declarations for enwv, result and infl
type env = (int * (int option)) list

type forest = list option Stack.stack x Table.table
type ’a stack = (int x ’a array) ref
type table = {buckets: bucket array ref,

hash: Item.item — 4int) ref,

count: int ref}

val result: forest (x abstraction of value result *)

type bucket = (Item.item x value) list

type Item.item = IntPairItem.item (% see Note 1 %)
type IntPairItem.ttem = (int x int) (x see Note 2 x)
type value = int

type infl = consumer list ForestMap.map

type ’a map = ’a option Stack.stack * Table.table
type consumer = int list — unit

Note 1: Item.item denotes item in structure Item

Note 2: IntPairltem.item denotes item in structure IntPairItem

SECSAFE-IMM-005-1.0

23

Appendix B. Main algorithm

fun check (R(Z),K)7n

| check (—R(Z),K)n

| check (pre; A prey,K)n
| check (pre; V pre,,K)n
| check (3z : pre,K) 7
| check (Vz : pre,K)n

let fun K' @= case unify(n,7,a) of
NONE -> ()
| SOME 7' -> K(%')
in (infl.register(R,K’);
app K’ (rho.sub R))
end

let fun K' @ = if rho.has(R,q)

then ()

else K (unify(n, #,a))
in app K’ (unifiable (7, %))
end
check (pre,, check (pre,,K)) n
check (pre,, K) n; check (pre,,K)
check (pre,K o t1) ((z,NONE): : 1)
let fun check’ [1((z,.)::7n') =XK(%')

| check’ (a::U)((w,-)::7")
= check (pre, check’ U) ((z,SOME a) :: ')

in check’ U ((z,NONE) :: n)
end

fun execute (R(Z))7

| execute 1 7
| execute (cli A cl)n
| execute (pre = cl)n

| execute (Vz : cl)n

let fun K @ = if rho.has(R,q)
then ()
else (rho.add(R,Q);
app(fn K => K'@
(infl.consumers R))
in app K(unifiable (7, %))
end

0O

execute cli 7; execute clx 7
check (pre, execute cl) 7y
execute cI ((x,NONE) :: n)

Note: rho is called result in the implementation

SECSAFE-IMM-005-1.0

24

Appendix C. Output from the solver

The Universe:

(L1, x1, 21, y1, L4, L5, L3, L6, L2, 1abQ)

Relation INIT/1:
(L),

Relation FVAR/1:
(Y1), (22), (x1),

Relation FLOW/2:

(L1,L2), (L2,L3), (L5,L3), (L3,L6), (L3, L4), (L4, L5),

Relation RDKILL/3:

(L6, y1,L6), (L6,y1,L5),
(L5, y1,L6), (L5,y1,L5),
(L4, 71, L4), (L4, Z1,L2),
(L2, 21, L4), (L2, z1,L2),
(L1,y1,L6), (L1, y1,L5),

Relation RDGEN/3:

(L6,y1,L6), (L5,y1,L5),

Relation RDIN/3:

(L6, 21, L2), (L6, 21, L4),
(L5, z1, L4), (L5, y1,L1),
(L4, 21, L2), (L4, 21, L4),

(L6,y1,L1), (L6, y1, labQ),
(L5, y1, L1), (L5, y1, labQ),
(L4, 71, 18bQ),
(L2, 71, 1abQ),
(L1,y1,L1), (L1, y1, labQ),

(L4, 71, L4), (L2, 71,L2), (L1,y1, L),

(L6,y1,L1), (L6,Yy1,L5), (L6, X1, abQ),

(L5, y1,L5), (L5, x1, 1abQ),

(L4, y1,L1), (L4, y1,L5), (L4, x1, 1abQ),

(L3,21,L2), (L3, 21,L4), (L3, y1, L1), (L3, y, L5), (L3, x1, 1abQ),
(L2, y1,L1), (L2, z1, 1abQ), (L2, x1, labQ),
(L1, x1, 1abQ), (L1, z1, 1abQ), (L1, y1, labQ),

Relation RDOUT/3:

(L6, 21,L2), (L6, 21, L4),

(L6, y1,L6), (L6, x1, 1abQ), (L5, z1, L4),

(L5, y1,L5), (L5, x1, 1abQ),

(L4, 71, L4), (L4, y1,L1),
(L3, 21, L2), (L3, 21, L4),
(L2, y1,L1), (L2, z1,L2),

(L4, y1,L5), (L4, x1,1abQ),

(L3,y1,L1), (L3,y1,L5), (L3,x1, 1abQ),

(L2, X1, 12bQ),

(L1,y1,LY1), (L1, z1, 1abQ), (L1, x1, labQ),

SECSAFE-IMM-005-1.0

25

Appendix D. Final result

Stack length: 196

Stack:

SOME [] SOME [] SOME [] SOME [] SOME [] SOME [] SOME [] SOME [] SOME [] SOME [0] SOME []

SOME [] SOME [0] SOME [] SOME [0] SOME [] SOME [4,6,8,0] SOME [3] SOME [] SOME [] SOME [] SOME []
SOME [] SOME [] SOME [] SOME [] SOME [8] SOME [] SOME [7,6,8] SOME [2] SOME [] SOME [8,4] SOME []
SOME [] SOME [8,4] SOME [] SOME [8,4] SOME [] SOME [8,4] SOME [] SOME [] SOME [8,4] SOME[]
SOME [4] SOME [] SOME [] SOME [4] SOME [] SOME [4] SOME [] SOME [7,6,5,4] SOME [2] SOME []

SOME [0,5] SOME [] SOME [0,5] SOME [] SOME [0,5] SOME [] SOME [] SOME [0,5] SOME [] SOME [0,5]
SOME [] SOME [] SOME [0,5] SOME [] SOME [5] SOME [] SOME [4,6,5] SOME [3] SOME [] SOME [7]
SOME [] SOME [7] SOME [3] SOME [] SOME [9] SOME [] SOME [9] SOME [] SOME [0] SOME [] SOME [9]
SOME [2,3,1] SOME [] SOME [] SOME [9] SOME [2,3,1] SOME [] SOME [9] SOME [2,3,1] SOME [] SOME[]
SOME [9] SOME [2,3,1] SOME [] SOME [9] SOME [2,3,1] SOME [] SOME [] SOME [9] SOME [2,3,1] SOME[]
SOME [9] SOME [2,3,1] SOME [] SOME [] SOME [9] SOME [2,3,1] SOME [] SOME [9] SOME [3,2,1] SOME[]
SOME [] SOME [9] SOME [3,2,1] SOME [] SOME [9] SOME [3,2,1] SOME [] SOME [7,5,4,6,8,0] SOME [2,1]
SOME [] SOME [9] SOME [] SOME [9] SOME [] SOME [9] SOME [1,2,3] SOME [] SOME [7] SOME [3]

SOME [] SOME [5] SOME [3] SOME [] SOME [4] SOME [2] SOME [] SOME [8] SOME [2] SOME [] SOME [0]
SOME [3] SOME [] SOME [] SOME [] SOME [] SOME [7,5,0,9] SOME [3] SOME [] SOME [] SOME [] SOME []
SOME [7,5,0,9] SOME [3] SOME [] SOME [] SOME [] SOME [4,8,9] SOME [2] SOME [] SOME [] SOME []
SOME [4,8,9] SOME [2] SOME [] SOME [] SOME [] SOME [] SOME [7,5,0,9] SOME [3] SOME [| SOME [8]
SOME [] SOME [6] SOME [] SOME [] SOME [6] SOME [] SOME [7,4] SOME [] SOME [5] SOME [] SOME []
SOME [] SOME [] SOME [0,8,4,5,7,9] SOME [7,5,4,6,8,0] SOME [7,5,4,6,8,0] SOME [7,5,4,8,0] SOME [7,5,4,8,0]
SOME [0,8,5,6,4] SOME [3,2,1] SOME [Q]

Buckets length: 448

Buckets:

[[1 [] [(58/4,59)] [(181/0,182)] [(123/7,124)] [] [1 [] [(51/3,52)] [1 [[} [[(116/9,117)] N 1 110100 01
[(167/6,172)] [(167/7,176)] [(167/8,168)] [] [] [[] [(30/4,33)] [] [] [] [(30/8,32)] [(30/9,31)] [(23/3,24)] [1 [1 [1 [1 [] []
(101 [1 [(16/6,17)(74/0,75)] [] [1 [1 [(74/4,96)] [(74/5,103)] [(74/6,89)] [(74/7,110)] [(2/0,21)(74/8,82)] [1 [] []
[(2/4,12)] [(2/5,16)] [(2/6,14)] [] [(2/8,19)(67/9,68)(125/3,126)] [(60/3,61)] [] [(183/0,184)] [T [1 [1 [1[1 [1 (1]
[(46/0,48)(111/1,112)] [(118/9,119)(111/2,164)] [(111/3,123)] [] [] [(46/5,49)] [] [(46/7,50)(104/1,105)] [(104/2,152)]
[(46/9,47)(104/3,128)] [(39/3,40)] [] [] [(169/8,170)] [(97/1,98)] [(97/2,247)] [(97/3,138)] [] [] [] [] [(90/1,91)]
[(90/2,157)] [(90/3,133)] [1 [1 [1 [] [(83/1,84)] [(83/2,169)] [(83/3,186)] [1 [1 [1 [1 [(76/1,77)] [(76/2,116)] [(76/3,181)]
(00 00 [(40501 [] [1[][(4/4,57)] [(4/5,60)] [] [(4/7,63)] [(4/8,54)(69/9,70) [1 [J [1 [1 [] [] [(120/3,12)] [1 [J (1 [1 []
[(55/8,56)(178/3,179)1 [T[1 (1 (101 (101 [1 (101 [0 [1 [1 [1 [(34/2,35)(164/4,165)] (1 [] [[(164/8,177)] [] [] [(157/4,158)]
Onoraszeiz3nanooononnnniiieo7e)lililie497)[(6/5104)] [(6/6,90)] [(6/7,111)]
[(71/9,72)(6/8,83)] [1[1[1 [1 [(64/7,65)] [1 [(G7/258) IO ONOONNOONNOONMNOMOIMNIN [(166/2167)]
[(108/9,209)1 [1 [1 [1 1 [1 [1 [(101/9,102)] [(29/2,30)(159/4,160)] [1 [] [1 [(159/8,174)] [] [(94/9,95)] [(152/4,153)] [] []
[1010[(87/9,88)] [(145/4,146)] [(145/5,151)] [(145/6,156)] [(145/7,163)(138/0,193)] [] [(73/1,74)]
[(80/9,81)(73/2,114)] [] [(138/5,139)] [] [] [] [(66/1,71)] [(1/1,9)(66/2,69)] [(1/2,10)(66/3,67)] [(LU3,1L)] [1 [1[1 (11111
00002053 00000000 C045346)] (100000000100 1[(161/4,162)] [] {1 [1 [(161/8,175)]
[(24/0,26)] [] [(154/4,155)] [1 [] [(24/5,27)] [(154/8,171)] [(24/7,28)] [] [(24/9,25)(147/4,148)] [] [] [(140/0,194)] 1 []
[11] [(140/5,141)] [] [(133/0,190)] [] [(3/0,23)] [1 [] [(133/5,134)] [(3/4,34)] [(3/5,39)] [] [(3/7,45)] [(3/8,29)]
[(126/4,137)] [(126/5,127)] [(61/5,62)(126/6,132)] [1 [] [1 [(54/255)] [1 [1 (1 [1 [1 (1 [1 [1 [1 [1 [] [(40/0,42)]
[(112/9,113)] [1[]] [(40/5,43)] [] [(40/7,44)] [(105/9,106)] [(40/9,41)] [1 [1 [1[1 {1 [(98/9,99)I [1 [J [1 [1 {1 []
[(92/9,92)] [(149/4,150)] [] [] [(142/0,195)] [(19/6,20)] [] [(84/9,85)] [] [(142/5,143)] [] [(12/5,13)(135/0,191)] []
[(5/0,66)] [(77/9,78)] [] [(135/5,136)] [(5/4,93)] [(5/5,100)] [(5/6,86)] [(5/7,107)] [(5/8,79)] [(63/3,64)] [(128/5,129)]
[(186/0,187)1 1 01 00 1 11 [1 [(179/0,180)] [(114/0,115)(121/7,122)] [] [] [(179/4,192)] [] [(179/6,189)] [] [(179/8,185)]
[(107/1,108)] [(107/2,161)] [(107/3,142)] [1 [1[1[] [(100/1,101)] [(100/2,149)] [(100/3,140)] [1 [(35/4,38)1 1 [1
[(93/1,94)] [(35/8,37)(93/2,159)] [(35/9,36)(93/3,135)] [1 [1 [1 [] [(86/1,87)] [(86/2,154)] [(86/3,130)] [1 [1[11]
[(79/1,80)(144/2,145)] [(21/8,22)(79/2,118)] [(79/3,183)] [] [(14/4,15)] [[1 [(14/7,18)(7/0,178)] [] [] [] [(7/4,144)]
[(7/5,125)(130/0,188)] [] [(0/0,8)(7/7,120)] [(7/8,166)] [(7/9,73)] [(130/5,131)] [1 [1 []

Number of elements: 188

SECSAFE-IMM-005-1.0 26

Appendix E. Final infl

Stack length: 209

Stack:

NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE SOME [c,c,c] SOME [c,c,c]

SOME [c,c,c] SOME [c,c,c] SOME [c,c,c,c,c] SOME [c,c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c]
SOME [c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c] NONE NONE
NONE NONE NONE NONE NONE SOME [c,c,c,c,c] SOME [c,c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c]

SOME [c,c,c,c] SOME [c,c,c,c] SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] SOME [c,c,c]

SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] NONE NONE NONE NONE NONE NONE SOME [c,c,c,c]

SOME [c,c,c,c] SOME [c,c,c,c] SOME [c,c,c,c] NONE NONE NONE NONE NONE NONE SOME [c,c,c,c,c]
SOME [c,c,c,c,c] SOME [c,c,c,c,c] NONE NONE NONE NONE NONE NONE SOME [c,c,c] SOME [c,c,c]

SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] NONE NONE NONE NONE NONE NONE SOME [c,c,c]

SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] SOME [c,c,c] NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE NONE
NONE NONE NONE NONE SOME [c,c,c,c,c,c,c,c,c] SOME [c] SOME [c] NONE NONE SOME [c] SOME [c]
Buckets length: 448

Buckets:

[1[(188/4,189)] [1[1 [1[(188/8,196)] [(51/0,52)] [[1 [1 [1 [1 [1 [1 [(116/9,117)] [(174/4,175)] [(44/3,45)] [] (] []
[(102/1,103)] [(102/2,184)] [(102/3,166)] [] 1 [1 [1 [1 [[1 [(160/5,161)]] [] [1 [(23/0,25)] [1 [1 [] 1 [(23/5,26)] []
[(237.20)] [1[(23/9.2401 1111 1101 1111 [1 [1 [(197/0,198)] [] [(132/1,133)] [(2/0,20)(132/2,186)] [(132/3,172)] [] []
[(2/4,11)] [(2/5,15)] [(2/6,13)] [(2/7,138)] [(2/8,18)] [] [] [(60/5,61)] [(190/8,191)] [] [1 [(53/254)] (1 [1 (] [1[1 []
[(A76/4177)1 [1][] [1 [(3%/0,41)]] [1 [] [1 [(39/5,42)(162/0,203)] [] [(39/7,43)] [] [(39/9,40)] [(162/5,163)] [1 [1 [1[]
[(97/9,98)] [1[1[111111]1[(18/1,88)] [(18/2,89)] [(18/3,90)] [(18/4,91)] [(18/5,92)] [(18/6,19)] [(18/7,150)]
[(83/9,84)(11/1,108)(18/8,151)] [(11/2,109)(18/9,152)] [(11/3,110)] [(11/4,111)(199/0,200)] [(11/5,12)] [(11/6,126)]
[(4/0,50)(11/7,127)] [(11/8,128)] [(11/9,129)] [] [(4/4,56)] [(4/5,59)] [] [(4/7,62)] [(4/8,53)] [(62/3,63)] [1 [1[1[1[11]
OO 0000 azea179) (100001 [(113/9,114)] [] [] [] [(164/0,204)] [] [] [(106/9,107)] [] [(164/5,165)]
[(34/4,37)] [1 11 [1 [(34/8,36)] [(34/9,35)] [1[1 [1[] [(85/1,86)] [(20/1,75)(85/2,190)] [(20/2,76)(85/3,201)] [(20/3,77)]
[(20/4,78)] [(20/5,79)] [(20/6,80)] [(20/7,81)] [(20/8,21)(13/1,99)] [(13/2,100)(20/9,153)] [(13/3,101)]
[(13/4,14)(201/0,202)] [(13/5,130)] [(13/6,131)] [(13/7,17)(6/0,72)] [(13/8,148)] [(13/9,149)] [] [(6/4,105)]
[(6/5,115)] [(6/6,96)] [(6/7,135)(136/9,137)] [(6/8,85)] [1 [1[1[1[1[1 01 [1 [(57/4,58)] [] [] [(115/1,116)] [(115/2,178)]
[(115/3,160)(180/4,181)] [(50/3,51)] [[] [(180/8,192)]] [1[1 [1 [] [(166/0,205)]] [1 [1[] [(166/5,167)] [1 (1 (1 [1[11]
[11(29/4,32)] [1 [1 [1 [(29/8,31)(94/9,95)] [(29/9,30)] [(22/3,23)] [1 [1 [] [] [(15/1,118)] [(15/2,119)] [(15/3,120)]
[(15/4,121)] [(15/5,122)] [(15/6,16)(138/1,139)] [(15/7,123)(138/2,140)] [(15/8,124)(138/3,141)]
[(15/9,125)(138/4,142)] [(138/5,143)] [(138/6,144)] [(138/7,145)] [(138/8,146)] [(138/9,147)] [(1/1,8)(73/9,74)]
[(1/2,9)] [(1/3,20)]][] [1 [1 [(66/9,67)] [(59/3,60)] [1[1 [1 [1 [1 [(182/4,183)] [] [] [] [(182/8,193)] [(45/0,47)] [1[][]
[1 [(45/5,48)(168/0,206)] [] [(45/7,49)] [] [(45/9,46)] [(38/3,39)(168/5,169)] [] [] [[(96/1,97)]
[(103/9,104)(96/2,182)] [(96/3,164)] [1[1 [1 [1[1 [1[] [1 [1 [1 [1 [(82/1,83)(154/9,155)] [(82/2,156)] [(82/3,199)] [] [] []
oooonnmnanieo.2211(I 1(3/4,33)] [(3/538)] [] [(3/7,44)(133/9,134)] [(3/8,28)(68/9,69)] [1 [1[1 [1 111
[(184/4,185)] [1 [1 [1 [(184/8,194)] [(112/1,113)] [(54/8,55)(112/2,176)] [(112/3,170)] [] [] [(170/0,207)] []
[(105/1,106)] [(105/2,174)] [(105/3,168)] [(170/5,271)] [1 1 [1[1 [1 [(33/2,34)] [1 [1[1 11 [1 [1 [1 1 [1 [1 [1 [(156/9,157)]
gooonooonn oissa,136)] [(5/0,65)(135/2,188)] [(135/3,158)] [] [] [(5/4,102)] [(5/5,112)] [(5/6,93)]
[(5/7,132)] [(70/9,71)(5/8,82)] [[] [] [] [(63/7,64)] [] [(56/2,57)(186/4,187)] [] [] [1 [(186/8,195)] [[1[1 1]
[(X72/0,208)] [1][] [1 [(X72/5,273)] [T01 1101 (1 [1 (1 [1 [T [] [(93/1,94)] [(93/2,180)] [(28/2,29)(93/3,162)] [] []
(587,159 1000000100 ee9snI 1111110 [(72/1,73)] [(72/2,154)] [(72/3,197)] [1 [1 1[I
[(0/0,7)(65/1,70)] [(65/2,68)] [(65/3,66)] [1 [1][]

Number of elements: 202

SECSAFE-IMM-005-1.0 27

