
Implementing the Flow Logic for Carmel

Authors : René Rydhof Hansen
Date : November 13, 2002
Number : SECSAFE-IMM-004-1.0
Classification : Public

1 Introduction

In [4] a control flow analysis for Carmel is specified and proved correct with
respect to the semantics as defined in [9]. The Carmel language is described in
detail in [6, 9]. Extensions to the basic control flow analysis are discussed in [3];
we shall not go into further detail with the control flow analysis or the extensions
of it here. In this paper we show how the flow logic specification given in [4]
systematically can be transformed into a specification for generating constraints
in the Alternation-free Least Fixed-point logic (ALFP). Constraints over this
language can be solved using the techniques described in [8, 7], in particular
they can be solved using the “Succinct Solver” of Nielson and Seidl.

The transformation is, deliberately, kept in a “high-level” style that is very
close to that of the Flow Logic specification. This is in part to facilitate the
proof of semantic correctness for the transformation and also in part to simplify
the transformation process. This comes at the price of lower efficiency, with
respect to both time and space, when solving the generated constraints. In
Section 6 a number of strategies for optimising the constraint generation are
discussed.

The remainder of the paper is structured as follows. Section 2 introduces
the Alternation-free Least Fixed-Point (ALFP) logic in more detail. Section 3
details how the abstract domains are represented as ALFP constraints and Sec-
tion 4 then shows how the Flow Logic specification is converted into ALFP
constraints; this includes a full specification of the constraint generation for all
the supported instructions. Semantic correctness of the conversion from Flow
Logic to ALFP is discussed in Section 5. A number of optimisation strate-
gies regarding the generated constraints are described in Section 6 and then in
Section 7 we give an overview of a prototype implementation of the constraint
generator. Conclusions and Future Work can be found in Section 8.

2 Alternation-free Least Fixed-Point logic

The fundamental idea in implementing the analysis of [4] is to convert the flow
logic clauses to clauses in the Alternation-free Least Fixed-Point (ALFP) logic,
because efficient means for finding solutions to ALFP clauses are well known,
such as the Succinct Solver technology, cf. [7, 8]. In the following we give a brief
introduction to the ALFP logic.

1

2.1 The constraint Language

Formulae in ALFP consists of clauses of the following form:

pre ::= R(x1, . . . , xk) | pre1 ∧ pre2 | pre1 ∨ pre2 | ∃x : pre

clause ::= R(x1, . . . , xk) | 1 | clause1 ∧ clause2

| pre ⇒ clause | ∀x : clause

where R is a k-ary relation symbol for k ≥ 1 and x1, . . . denote variables while
1 is the always true clause.

In the following let t be a pre-condition or a clause. Then for a given universe,
U , of atomic values, and interpretations ρ for relation symbols and σ for free
variables, the satisfaction relation for pre-conditions and clauses, (ρ, σ) |=ALFP t,
can be defined as follows:

(ρ, σ) |=ALFP 1 iff true
(ρ, σ) |=ALFP R(x1, . . . , xk) iff (σx1, . . . , σxk) ∈ ρR

(ρ, σ) |=ALFP ∃x : pre iff (ρ, σ[x 7→ a]) |=ALFP pre for some a ∈ U
(ρ, σ) |=ALFP ∀x : t iff (ρ, σ[x 7→ a]) |=ALFP t for all a ∈ U
(ρ, σ) |=ALFP t1 ∧ t2 iff (ρ, σ) |=ALFP t1 and (ρ, σ) |=ALFP t2
(ρ, σ) |=ALFP pre1 ∨ pre2 iff (ρ, σ) |=ALFP pre1 or (ρ, σ) |=ALFP pre2

(ρ, σ) |=ALFP pre ⇒ cl iff (ρ, σ) |=ALFP cl whenever (ρ, σ) |=ALFP pre

For a given interpretation, σ, of variable symbols we call an interpretation, ρ,
of relation symbols a solution to a clause clause if indeed (ρ, σ) |=ALFP clause.

2.2 Solving the Constraints

Using the techniques of [7] it is possible to efficiently find solutions to given
clauses. An implementation, called Succinct Solver, using these and other ad-
vanced techniques has been made by Nielson and Seidl and is described in [8].

3 Representing the Abstract Domains

This section is devoted to showing how the abstract domains used in the control
flow analysis can be represented in the constraint language.

Basic values. For the pure control flow analysis, integers are modeled as a
single token: INT. For a simple data flow analysis, this can easily be extended
to a single token for each constant integer, v, occurring in the program: INTv

and a top-element to represent “unknown”: INT>.
Object references modeled simply as classnames: an object reference to a

class classname is represented by cl classname. Similarly arrays of type t are
represented as ar t.

Stacks. In order to model the abstract stack we use a quarternary relation,
S, relating adresses and stack positions to values, thus the clause

S(m0, pc0, [3], INT)

SECSAFE-IMM-004-1.0 2

is intended to mean that the abstract stack at address (m0, pc0) contains an
integer value at stack position three.

Since we must be able to manipulate and calculate stack positions directly
within the clauses, stack positions must be represented explicitly:

[0] = zero

[n + 1] = suc([n])

Instead of constructing numbers, as described above, special constants could be
used to directly encode numbers, eg. int 7 for the number seven; however, such
an approach also would require that tables for doing arithmetic are encoded
explicitly.

Since only stack positions, and not eg. local variable indices, are manipulated
or calculated directly within the clauses, only these need to be represented using
the above.

We can now model an abstract stack, Ŝ(m0, pc0) = A1 :: · · · :: An, at address
(m0, pc0) where Ai = {a1

i , . . . , a
ji

i } as follows:

S(m0, pc0, [0], a1
1)∧ . . . ∧S(m0, pc0, [0], aj1

1)∧
...

S(m0, pc0, [n − 1], a1
n)∧ . . . ∧S(m0, pc0, [n − 1], ajn

n)

Thus, the top of the stack is at position zero, [0], with the rest of the stack in
the following positions.

Due to the way the current version of the solver handles terms, such as stack
positions, it is necessary to calculate stack positions “in advance”, ie. in the
precondition, using unification. Thus

∀i: ∀a: S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, [i + 1], a)

should be written

∀i: ∀a: ∀y: (y = [i + 1]) ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)

Local Heap. The local heap is an array containing the values for the local
variables. As for stacks a local heap is assigned to every address of the program.
But unlike for stacks, we do not need to manipulate the index or position of
local variables, and therefore we do not need a special representation for these
but can use simple tokens: var 3 to mean the local variable at index 3.

Again we use a quarternary relation to relate addresses and variable index
to values:

L(m0, pc0, var 2, INT)

The above models that the local variable with index 2, at address (m0, pc0) has
an integer value.

Heap and static Heap. The heap is represented as a ternary relation that
relates object references and field id’s to values, if for instance Ĥ(Ref σ)(f.id) =
v then

H(cl σ, f.id, v)

SECSAFE-IMM-004-1.0 3

Since the array is used for both objects and arrays, we use a “dummy” value,
ARRAY, to differentiate between the two uses. Thus if Ĥ(Ref (array t)) =
{INT} then

H(ar t, ARRAY, INT)

The static heap is represented in a similar manner, except that no references
are needed, only field identifiers, cf. [9]. As an example, if K̂(f.id) = v then

K(f.id, v)

Method Lookup. In the semantics a function, methodLookup, is defined
that given a method identifier and a class it looks up the implementation of the
method, based on the class hierarchy. This is modeled in the expected manner
in the constraint language, for instance

mv = methodLookup(m.id, σ)

is translated into
ML(m.id, cl σ, mv)

The constraints defining the relation ML are derived directly from the class
hierarchy.

End Tokens. The special tokens occurring in addresses indicating the end
of a method, used for transferring return values from methods, are represented
as constants in the constraint language. A special relation then relates such
constants to the method whose end token they represent:

END(m, end m)

meaning that the constant end m now represents the end token for the method
represented by m. The relation can then be used for looking up the particular
end token for a given method. In certain situations the end token need not be
looked up but can be computed directly; in such cases we write ENDm for the
token belonging to method m.

Like the ML relation, the END relation depends trivially on the structure of
programs and therefore it is defined from the outset rather than solved for.

4 Generating Constraints

In this section we show how to systematically transform the flow logic spec-
ification of the analysis, cf. [4], into another flow logic specification based on
ALFP. Using the Succinct Solver technology, cf. Section 2.2, we can efficiently
find solutions to ALFP clauses and thereby obtain an implementation of the
control flow analysis.

We first present and discuss the new specification in detail for a few represen-
tative instructions (Section 4.1), followed by the full specification (Section 4.2).

SECSAFE-IMM-004-1.0 4

4.1 A Few Interesting Clauses

4.1.1 The push Instruction

For the push-instruction the flow logic specification is given as follows:

(K̂, Ĥ, L̂, Ŝ) |= (m0, pc0) : push t v

iff {v} :: Ŝ(m0, pc0) v Ŝ(m0, pc0 + 1)

L̂(m0, pc0) v L̂(m0, pc0 + 1)

This entails that the value being pushed, v, should be put on top of the stack,
ie. in position zero, in the stack for the next instruction at pc0 + 1:

S(m0, pc0 + 1, [0], INT)

Note that the actual value, v, is replaced by a single token INT as we do not
track the actual values in the control flow analysis.

Furthermore, the entire stack for the current instruction (before the push-
instruction is executed) must be copied to the instruction at pc0 + 1 but moved
one stack position down, eg. what was in position [0] should be copied to position
[1], this is accomplished by the clause below:

∀i: ∀a: ∀y: (y = [i + 1]) ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)

While the above clause is a very straightforward translation of the Flow Logic
specification, it is quite expensive in terms of both time and space. In Section 6
a number of optimisation strategies for improving this situation are discussed.

Finally, the local variables are untouched and thus copied forward unchanged:

∀x∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

putting all of the above clauses together, we arrive at:

(K, H, L, S) |=CG (m0, pc0) : push t v iff
S(m0, pc0 + 1, [0], INT)
∀i : ∀a : ∀y : (y = [i + 1]) ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)
∀x: ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

4.1.2 The store Instruction

The store-instruction is analysed as follows

(K̂, Ĥ, L̂, Ŝ) |= (m0, pc0) : store t x

iff A :: X / Ŝ(m0, pc0) :

X v Ŝ(m0, pc0 + 1)

A v L̂(m0, pc0 + 1)(x)

L̂(m0, pc0) v{x} L̂(m0, pc0 + 1)

Intuitively A :: X / Ŝ(m0, pc0) is a binding operator, in that it binds whatever
is on top of the abstract stack at the current address to the variable A, which
can then be referenced in a later clause. For a more thorough explanation of
the specification and the notation used see [4].

SECSAFE-IMM-004-1.0 5

Following the above specification we see that the values on top of the stack
should be copied to the local variable x, this gives rise to the following con-
straints:

∀a : S(m0, pc0, [0], a) ⇒ L(m0, pc0 + 1, var x, a)

Note that, as decribed previously, the local variable x is represented as the token
var x.

Next the remainder of the stack must be moved one place, as the top of the
stack is popped after having been copied. This is formulated in the constraint
language using the following clause:

∀i : ∀a : ∀y : (y = [i + 1]) ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

Having moved the stack into place, we now must copy all the local variables
onwards, except the variable x which has just been updated and thus we need
not copy the old value for x forwards:

∀y : ∀a : (y 6= var x) ∧ L(m0, pc0, y, a) ⇒ L(m0, pc0 + 1, y, a)

Finally, combining the above we have the following constraints for the store-
instruction

(K, H, L, S) |=CG (m0, pc0) : store t x iff
∀a : S(m0, pc0, [0], a) ⇒ L(m0, pc0 + 1, var x, a)
∀i : ∀a : ∀y : (y = [i + 1]) ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀y : ∀a : (y 6= var x) ∧ L(m0, pc0, y, a) ⇒ L(m0, pc0 + 1, y, a)

4.1.3 The putfield Instruction

Storing values in instance fields is accomplished by the putfield-instruction.
Based on the analysis of the instruction

(K̂, Ĥ, L̂, Ŝ) |= (m0, pc0) : putfield f

iff A :: B :: X / Ŝ(m0, pc0) :

∀(Ref σ′) ∈ B : A v Ĥ(Ref σ′)(f.id)

X v Ŝ(m0, pc0 + 1)

L̂(m0, pc0) v L̂(m0, pc0 + 1)

we see that the value on top of the stack is copied into the field pointed to
by the reference found in the second position of the stack. Converting this to
constraints we get

∀r : ∀a : S(m0, pc0, [1], r) ∧ S(m0, pc0, [0], a) ⇒ H(r, f.id, a)

Now the remainder of the stack, the original stack less the top two elements,
should be copied onwards to the next instruction:

∀y : ∀a : ∀i : y = [i + 2] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

Finally, none of the local variables were modified and should simply be copied
onwards using the familiar clause:

∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

SECSAFE-IMM-004-1.0 6

Combining the above constraints we can formulate the clause for putfield:

(K, H, L, S) |=CG (m0, pc0) : putfield f iff
∀r : ∀a : S(m0, pc0, [1], r) ∧ S(m0, pc0, [0], a) ⇒ H(r, f, a)
∀y : ∀a : ∀i : y = [i + 2] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

4.1.4 The invokevirtual Instruction

Converting the specification for invokevirtual follows the same general pat-
tern as above although it is a bit more involved. First we recall the flow logic
specification for invokevirtual:

(K̂, Ĥ, L̂, Ŝ) |= (m0, pc0) : invokevirtual m

iff A1 :: · · · :: A|m| :: B :: X / Ŝ(m0, pc0) :
∀(Ref σ′) ∈ B :

mv = methodLookup(m.id, σ′)

{(Ref σ′)} :: A1 :: · · · :: A|m| v L̂(mv , 1)[0..|mv|]
m.returnType 6= void ⇒

T :: Y / Ŝ(mv , ENDmv
) : T :: X v Ŝ(m0, pc0 + 1)

m.returnType = void ⇒

X v Ŝ(m0, pc0 + 1)

L̂(m0, pc0) v L̂(m0, pc0 + 1)

First the reference to the object where the invoked method resides is copied (as
a self reference) to local variable 0 of the invoked method:

∀r∀mv : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ⇒ L(mv, 1, var 0, r)

Next the parameters are transferred from the stack of the current method to
the local variables of the invoked method:

∀r∀mv∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧
S(m0, pc0, [0], a) ⇒ L(mv, 1, var 1, a)

...
∀r∀mv∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

S(m0, pc0, [|m| − 1], a) ⇒ L(mv, 1, var |m|, a)

In case the method returns a value, that value should be put on top of the
stack for the next instruction, and the rest of the current stack, less the argu-
ments to the invoked method, is also copied forward. Thus if m.returnType 6=
void then the following constraints are generated:

∀y : ∀z : ∀a : ∀i :
y = [i + |m| + 1] ∧ z = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, z, a)

∀r∀mv∀endmv∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧
END(mv, endmv) ∧ S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)

If on the other hand the invoked method does not return a value, then only
the current stack, less the arguments to the invoked method, is copied forward.
Thus if m.returnType = void then the following constraints are generated:

∀y : ∀a : ∀i : y = [i + |m| + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

SECSAFE-IMM-004-1.0 7

Finally, since the local variables of the invoking method are not modified, they
are simply copied along as well:

∀x∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Putting it all together we arrive at:

(K, H, L, S) |=CG (m0, pc0) : invokevirtual m iff
∀r : ∀mv : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ⇒

L(mv, 1, var 0, r)
∀r : ∀mv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

S(m0, pc0, [0], a) ⇒ L(mv, 1, var 1, a)
...

∀r : ∀mv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧
S(m0, pc0, [|m| − 1], a) ⇒ L(mv, 1, var |m|, a)

if m.returnType 6= void then
∀y : ∀z : ∀a : ∀i :

y = [i + |m| + 1] ∧ z = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, z, a)
∀r : ∀mv : ∀endmv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

END(mv, endmv) ∧ S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)
if m.returnType = void then
∀y : ∀a : ∀i : y = [i + |m| + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

4.2 Full Specification

Below the full specification follows.

Stack manipulation.

(K, H, L, S) |=CG (m0, pc0) : push t v iff
S(m0, pc0 + 1, [0], INT)
∀i : ∀a : ∀y : (y = [i + 1]) ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : pop n iff
∀y : ∀i : ∀a : y = [i + n] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : dup m n iff
∀a : S(m0, pc0, [0], a) ⇒ S(m0, pc0 + 1, [0], a)

...
∀a : S(m0, pc0, [n − 1], a) ⇒ S(m0, pc0 + 1, [n − 1], a)
∀a : S(m0, pc0, [0], a) ⇒ S(m0, pc0 + 1, [n], a)

...
∀a : S(m0, pc0, [m − 1], a) ⇒ S(m0, pc0 + 1, [(m − 1) + n], a)
∀y : ∀z : ∀i : ∀a : y = [i + n] ∧ z = [i + n + m] ∧ S(m0, pc0, y, a) ⇒

S(m0, pc0 + 1, z, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

SECSAFE-IMM-004-1.0 8

(K, H, L, S) |=CG (m0, pc0) : swap m n iff
∀a : S(m0, pc0, [0], a) ⇒ S(m0, pc0 + 1, [n], a)

...
∀a : S(m0, pc0, [m − 1], a) ⇒ S(m0, pc0 + 1, [(m − 1) + n], a)
∀a : S(m0, pc0, [m], a) ⇒ S(m0, pc0 + 1, [0], a)

...
∀a : S(m0, pc0, [(n − 1) + m], a) ⇒ S(m0, pc0 + 1, [n − 1], a)
∀y : ∀z : ∀i : ∀a : y = [i + n + m] ∧ z = [i + n + m] ∧ S(m0, pc0, y, a) ⇒

S(m0, pc0 + 1, z, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Arithmetic operators.

(K, H, L, S) |=CG (m0, pc0) : numop t unop t′opt iff
S(m0, pc0 + 1, [0], INT)
∀y : ∀z : ∀i : ∀a : y = [i + 1] ∧ z = [i + 1] ∧ S(m0, pc0, y, a) ⇒

S(m0, pc0 + 1, z, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : numop t binop t′opt iff
S(m0, pc0 + 1, [0], INT)
∀y : ∀z : ∀i : ∀a : y = [i + 2] ∧ z = [i + 1] ∧ S(m0, pc0, y, a) ⇒

S(m0, pc0 + 1, z, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Control flow.

(K, H, L, S) |=CG (m0, pc0) : goto L iff
∀i : ∀a : S(m0, pc0, [i], a) ⇒ S(m0, L, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, L, x, a)

(K, H, L, S) |=CG (m0, pc0) : if t cmpop goto L iff
∀y : ∀i : ∀a : y = [i + 2] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀y : ∀i : ∀a : y = [i + 2] ∧ S(m0, pc0, y, a) ⇒ S(m0, L, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, L, x, a)

(K, H, L, S) |=CG (m0, pc0) : if t cmpop nullCmp goto L iff
∀y : ∀i : ∀a : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀y : ∀i : ∀a : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, L, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, L, x, a)

(K, H, L, S) |=CG (m0, pc0) : lookupswitch t (ki=>Li)
n
1 , default=>L0 iff

∀y : ∀i : ∀a : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, L0, [i], a)
...

∀y : ∀i : ∀a : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, Ln, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, L0, x, a)

...
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, Ln, x, a)

SECSAFE-IMM-004-1.0 9

(K, H, L, S) |=CG (m0, pc0) : tableswitch t l=>(Li)
n
1 , default=>L0 iff

∀y : ∀i : ∀a : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, L0, [i], a)
...

∀y : ∀i : ∀a : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, Ln, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, L0, x, a)

...
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, Ln, x, a)

Local variables.

(K, H, L, S) |=CG (m0, pc0) : load t x iff
∀a : L(m0, pc0, var x, a) ⇒ S(m0, pc0 + 1, [0], a)
∀y : ∀i : ∀a : y = [i + 1] ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : store t x iff
∀a : S(m0, pc0, [0], a) ⇒ L(m0, pc0 + 1, var x, a)
∀i : ∀a : ∀y : (y = [i + 1]) ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀y : ∀a : (y 6= var x) ∧ L(m0, pc0, y, a) ⇒ L(m0, pc0 + 1, y, a)

(K, H, L, S) |=CG (m0, pc0) : inc t x c iff
∀i : ∀a : S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Object Language.

(K, H, L, S) |=CG (m0, pc0) : checkcast t iff
∀i : ∀a : S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : instanceof t iff
S(m0, pc0 + 1, [0], INT)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : new σ iff
S(m0, pc0 + 1, [0], cl σ)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : getfield f iff
∀r : ∀a : S(m0, pc0, [0], r) ∧ H(r, f, a) ⇒ S(m0, pc0 + 1, [0], a)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : getfield this f iff
∀r : ∀a : L(m0, pc0, var 0, r) ∧ H(r, f, a) ⇒ S(m0, pc0 + 1, [0], a)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

SECSAFE-IMM-004-1.0 10

(K, H, L, S) |=CG (m0, pc0) : putfield f iff
∀r : ∀a : S(m0, pc0, [1], r) ∧ S(m0, pc0, [0], a) ⇒ H(r, f, a)
∀y : ∀a : ∀i : y = [i + 2] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : putfield this f iff
∀r : ∀a : L(m0, pc0, var 0, r) ∧ S(m0, pc0, [0], a) ⇒ H(r, f, a)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : getstatic f iff
∀a : K(f, a) ⇒ S(m0, pc0 + 1, [0], a)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : putstatic f iff
∀a : S(m0, pc0, [0], a) ⇒ K(f, a)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Method Support

(K, H, L, S) |=CG (m0, pc0) : invokestatic m iff
∀a : S(m0, pc0, [0], a) ⇒ L(m, 1, var 0, a)

...
∀a : S(m0, pc0, [|m| − 1], a) ⇒ L(m, 1, var (|m| − 1), a)
if m.returnType = void then
∀y : ∀a : ∀i : y = [i + |m|] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

if m.returnType 6= void then
∀a : S(m, ENDm, [0], a) ⇒ S(m0, pc0 + 1, [0], a)
∀y : ∀z : ∀a : ∀i : y = [i + |m|] ∧ z = [i + 1]∧

S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, z, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : invokespecial m iff
∀r : S(m0, pc0, [|m|], r) ⇒ L(m, 1, var 0, r)
∀a : S(m0, pc0, [0], a) ⇒ L(m, 1, var 1, a)

...
∀a : S(m0, pc0, [|m| − 1], a) ⇒ L(m, 1, var |m|, a)
if m.returnType = void then
∀y : ∀a : ∀i : y = [i + |m| + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

if m.returnType 6= void then
∀a : S(m, ENDm, [0], a) ⇒ S(m0, pc0 + 1, [0], a)
∀y : ∀z : ∀a : ∀i : y = [i + |m| + 1] ∧ z = [i + 1]∧

S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, z, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

Note that for definite, ie. static and special, methods the end token, ENDm,
need not be looked up, but can be calculated directly since the invoked method is

SECSAFE-IMM-004-1.0 11

uniquely and completely determined at compile time unlike for virtual methods.

(K, H, L, S) |=CG (m0, pc0) : invokevirtual m iff
∀r : ∀mv : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ⇒

L(mv, 1, var 0, r)
∀r : ∀mv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

S(m0, pc0, [0], a) ⇒ L(mv, 1, var 1, a)
...

∀r : ∀mv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧
S(m0, pc0, [|m| − 1], a) ⇒ L(mv, 1, var |m|, a)

if m.returnType 6= void then
∀y : ∀z : ∀a : ∀i :

y = [i + |m| + 1] ∧ z = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, z, a)
∀r : ∀mv : ∀endmv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

END(mv, endmv) ∧ S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)
if m.returnType = void then
∀y : ∀a : ∀i : y = [i + |m| + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)

∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : invokeinterface m iff
∀r : ∀mv : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ⇒

L(mv, 1, var 0, r)
∀r : ∀mv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

S(m0, pc0, [0], a) ⇒ L(mv, 1, var 1, a)
...

∀r : ∀mv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧
S(m0, pc0, [|m| − 1], a) ⇒ L(mv, 1, var |m|, a)

if m.returnType 6= void then
∀a : ∀i : S(m0, pc0, [i + |m| + 1], a) ⇒ S(m0, pc0 + 1, |i + 1|, a)
∀r : ∀mv : ∀endmv : ∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

END(mv, endmv) ∧ S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)
if m.returnType = void then
∀a : ∀i : S(m0, pc0, [i + |m| + 1], a) ⇒ S(m0, pc0 + 1, |i|, a)

∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

When returning from a method, the return value must be copied to the location
specified by the end token related to the current method. The end token is
computed rather than looked up:

(K, H, L, S) |=CG (m0, pc0) : return t iff
∀a : S(m0, pc0, [0], a) ⇒ S(m0, ENDm0

, [0], a)

As a special case, return without a return value simply generates the always
true clause:

(K, H, L, S) |=CG (m0, pc0) : return iff
1

Array Support.

(K, H, L, S) |=CG (m0, pc0) : new (array t) iff
S(m0, pc0 + 1, [0], ar t)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

SECSAFE-IMM-004-1.0 12

(K, H, L, S) |=CG (m0, pc0) : arraylength iff
S(m0, pc0 + 1, [0], INT)
∀y : ∀a : ∀i : y = [i + 1] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : arrayload t iff
∀r : ∀a : S(m0, pc0, [1], r) ∧ H(r, ARRAY, a) ⇒ S(m0, pc0 + 1, [0], a)
∀y : ∀z : ∀a : ∀i :

y = [i + 1] ∧ z = [i + 2] ∧ S(m0, pc0, z, a) ⇒ S(m0, pc0 + 1, y, a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

(K, H, L, S) |=CG (m0, pc0) : arraystore t iff
∀r : ∀a : S(m0, pc0, [2], 2) ∧ S(m0, pc0, [0], a) ⇒ H(r, ARRAY, a)
∀y : ∀a : ∀i :

y = [i + 3] ∧ S(m0, pc0, y, a) ⇒ S(m0, pc0 + 1, [i], a)
∀x : ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

5 Theoretical Results

In the previous sections we have shown how the Flow Logic specification can
be converted into a constraint generating format. In this section we prove that
the conversion is correct, in other words: that a solution to the constraints is
an acceptable analysis with respect to the Flow Logic specification.

To this end we first define a concretisation function on solutions for con-
straint systems:

Definition 1 Let L, S, K and H be relations defined as in Section 3. We then

define

γ(L)(m, pc)(x) = {v | L(m, pc, x, v)}

γ(S)(m, pc)|i = {v | S(m, pc, i, v)}

γ(K, H, L, S) = (γ(K), γ(H), γ(L), γ(S))

The above definition formalises the intuitive relation between solutions for con-
straint systems and analysis estimates. It remains to be shown that this relation
does indeed hold; this is stated formally in the following Conjecture:

Fact 2

(K, H, L, S) |=CG (m0, pc0) : instr iff γ((K, H, L, S)) |= (m0, pc0) : instr

Proof (sketch). The fact is proved by case analysis on instr.

Case (push): We assume that

(K, H, L, S) |=CG (m0, pc0) : push v (1)

and must prove that γ((K, H, L, S)) |= (m0, pc0) : push v . From (1) it
follows that

S(m0, pc0 + 1, [0], INT) (2)

∀i : ∀a : ∀y :

(y = [i + 1]) ∧ S(m0, pc0, [i], a) ⇒ S(m0, pc0 + 1, y, a) (3)

∀x: ∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a) (4)

SECSAFE-IMM-004-1.0 13

From (2) it follows that

γ(S)(m0, pc0 + 1)|0 ⊇ {INT} (5)

and from (3) we have

∀i : ∀a : a ∈ γ(S)(m0, pc0)|i ⇒ v ∈ γ(S)(m0, pc0 + 1)|i+1

which is equivalent to

∀i : γ(S)(m0, pc0)|i ⊆ γ(S)(m0, pc0 + 1)|i+1 (6)

Now combining (5) and (6) yields

{INT} :: γ(S)(m0, pc0) v γ(S)(m0, pc0 + 1) (7)

From (4) we immediately obtain

∀x :
γ(L)(m0, pc0)(x) ⊆ γ(L)(m0, pc0 + 1)(x)

(8)

which is equivalent to

γ(L)(m0, pc0) v γ(L)(m0, pc0 + 1) (9)

As a result of the intuitive relation, it can be thought of as simply a change of
notation, between the Flow Logic specification and the constraint generator the
proof is rather straightforward.

6 Optimising the Constraints

In this section we discuss a number of optimisation strategies that can be applied
to the constraints defined in the previous sections. Which strategies to employ
and whether to employ them at the constraint level or at the specification level
will most likely depend on the specific situation; therefore experimentation and
benchmarking will be needed to determine what is appropriate for the control
flow analysis discuseed in this paper.

6.1 Constraint Tuning

In [1] a number of experiments with the Succinct Solver are performed. These
experiments indicate several ways to increase the performance of the solver by
careful (re-)formulation of the constraints to be solved. In the following we
briefly discuss how the suggestions from [1] can be applied to the constraints
defined in this paper.

SECSAFE-IMM-004-1.0 14

6.1.1 Parameter Ordering

Earlier versions of the solver were rather sensitive to the particular ordering
of parameters in a relation due to the internal representation of relations. Ex-
periments (cf. [1]) show that choosing the right parameter ordering can have a
significant impact on the time needed to solve a particular set of constraints.

To overcome this problem the solver now computes all the relevant reorder-
ings of a relation internally, thus allowing it to always choose the best reordering
in a given situation. This internal computation is guaranteed to yield the small-
est possible number of reorderings needed for binary and tertiary relations. For
relations with four or more parameters this cannot be guaranteed.

While the internal computation of all the relevant reorderings can reduce
the time needed to solve a set of constraints significantly, it also implies an
increase in the space needed to solve the constraints, since a relation may be
represented a number of times internally (once for each relevant reordering).
For very large constraint sets it may thus be necessary to turn off the internal
computation of reorderings at the price of (possibly) increasing the time needed
to solve the constraints. In the long term, the problem can be alleviated by
implementing more space efficient data structures for the internal representation
of the different reorderings.

6.1.2 Conjunct Ordering in Preconditions

Since the solver evaluates preconditions from left to right by propagating vari-
able bindings, called environments, that satisfy subclauses in the precondition,
time savings can be achieved by moving subclauses that only allow a small
number of environments, ie. subclauses that are only true for a small number
of values, more to the left in a precondition, since this reduces the number of
environments passed further on in the evaluation of a precondition.

This can be illustrated by looking at the constraints for the invokevirtual

instruction. Here the constraints for copying the arguments forward to the
invoked method are of the following form:

∀r : ∀mv : ∀a :
S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ∧ S(m0, pc0, [0], a) ⇒

L(mv, 1, var 1, a)

Since the ML relation is expected to be quite sparse, the above clause should be
rewritten to exploit this fact, ie.:

∀r : ∀mv : ∀a :
ML(m.id, r, mv) ∧ S(m0, pc0, [|m|], r) ∧ S(m0, pc0, [0], a) ⇒

L(mv, 1, var 1, a)

Similarly for the END-tokens (still for the invokevirtual instruction):

∀r : ∀mv : ∀endmv : ∀a :
S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ∧ END(mv, endmv)∧

S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)

Here both the ML and the END relations are expected to be quite sparse, thus

SECSAFE-IMM-004-1.0 15

the above should be rewritten as

∀r : ∀mv : ∀endmv : ∀a :
END(mv, endmv) ∧ ML(m.id, r, mv) ∧ S(m0, pc0, [|m|], r)∧

S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)

Such optimisations are possible for several instructions.

6.1.3 Existential Quantification in Preconditions

Another technique for optimising the time requirement of a set of constraints is
to change universal quantifiers into existential quantifiers where possible without
changing the meaning of a constraint. In general this is possible in the case
where a universally quantified variable is used in the precondition but not in
the conclusion of an implication, ie. let x be a variable that is not free in prey

and con then a clause of the following form

∀x : ∀y1 : · · · ∀yn : (prex ∧ prey) ⇒ conc

should be converted into

∀y1 : · · · ∀yn : ((∃x : prex) ∧ prey) ⇒ conc

This optimisation is illustrated using the invokevirtual instruction, where the
clauses that model the parameter transfer are of the form:

∀r : ∀mv : ∀a :
S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ∧ S(m0, pc0, [0], a) ⇒

L(mv, 1, var 1, a)

Applying the above optimisation rule, such a constraint can be rewritten to the
following:

∀mv : ∀a :
(∃r : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)) ∧ S(m0, pc0, [0], a) ⇒

L(mv, 1, var 1, a)

6.1.4 Sharing Preconditions

It is possible to improve the time and space needed (by a constant factor) by
merging clauses with the same preconditions but different conclusions. This then
avoids recomputing the precondition for each different conclusion. In symbols,
clauses on the form

(pre ⇒ conc1) ∧ (pre ⇒ conc2)

are converted into clauses where the shared precondition is made explicit:

pre ⇒ (conc1 ∧ conc2)

SECSAFE-IMM-004-1.0 16

We illustrate this conversion by applying it to the invokevirtual instruction:

∀r∀mv : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ⇒
L(mv, 1, [0], r)

∀r∀mv∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧
S(m0, pc0, [0], a) ⇒ L(mv, 1, [1], a)

...
∀r∀mv∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

S(m0, pc0, [|m| − 1], a) ⇒ L(mv, 1, [|m|], a)
∀a∀i : S(m0, pc0, [i + |m| + 1], a) ⇒ S(m0, pc0 + 1, |i + 1|, a)
∀r∀mv∀endmv∀a : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv)∧

END(mv, endmv) ∧ S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)
∀x∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

is converted into

∀r∀mv : S(m0, pc0, [|m|], r) ∧ ML(m.id, r, mv) ⇒
L(mv, 1, [0], r)
∀a :

S(m0, pc0, [0], a) ⇒ L(mv, 1, [1], a)
...
S(m0, pc0, [|m| − 1], a) ⇒ L(mv, 1, [|m|], a)
∀endmv :

END(mv, endmv) ∧ S(mv, endmv, [0], a) ⇒ S(m0, pc0 + 1, [0], a)
∀a : ∀i : S(m0, pc0, [i + |m| + 1], a) ⇒ S(m0, pc0 + 1, [i + 1], a)
∀x∀a : L(m0, pc0, x, a) ⇒ L(m0, pc0 + 1, x, a)

6.2 Path Compression

Rather than “tweaking” the individual clauses, a more global approach could
be taken, ie. looking at all the generated clauses. With this approach we can
identify paths where information is just copied forward and compress them. For
example:

Ŝ(m0, pc0) v Ŝ(m0, pc0 + n1) v · · · v Ŝ(m0, pc0 + ni)

can be compressed to

Ŝ(m0, pc0) v Ŝ(m0, pc0 + ni)

and thus eliminating all the intermediate steps. This can be done if and only if

all the intermediate variables, ie. Ŝ(m0, pc0 + n2), . . . , Ŝ(m0, pc0 + ni−1), have
exactly one definition and exactly one use.

The clauses that arise from the control flow analysis are especially likely to
have such paths for local variables; most instructions do not access or modify
local variables, but the analysis copies them forward nevertheless. Instead of
finding such paths in the clauses, it would also be possible to lift path compres-
sion directly into the flow logic specification of the control flow anlaysis by only
copying information forward to where it is needed.

SECSAFE-IMM-004-1.0 17

6.3 Better Representation of the Abstract Domains

Another approach to reducing space required by the constraints is to find better,
ie. less space consuming, representations of the abstract domains. The stack and
the local heap are obvious candidates for such a representation change, especially
in combination with path compression as discussed in Section 6.2.

For the stack a possible alternative to the current representation is to use
stack variables rather than the full (abstract) stack. The idea is to use place-
holders to keep track of the possible stack layouts and then for each placeholder
keeping track of the possible values that placeholder can have. The advantage
is that it eliminates the need for copying the full set of possible values for a
stack position, instead only the placeholder is copied. We are currently work-
ing on ideas along these lines, in particular with an eye to using the optimised
representation when implementing the data flow analysis discussed in [3].

7 Prototype Implementation

In order to obtain feedback on the analysis and constraint generation as early
in the process as possible, a simple constraint generation prototype has been
implemented in Haskell (cf. www.haskell.org). We shall not go into any im-
plementation details here, but the prototype is available from the author upon
request.

The prototype consists of a simple parser, that parses af simplified version
of Carmel (called CarmelLight), and a constraint generator for the Succinct
Solver. The choice of parsing a simplified Carmel rather than “real” Carmel
syntax was made to cut down on the development time of the prototype.

Because of the lack of benchmark programs available in the Carmel syntax,
as defined in [6], and the absence of an automatic translator from JavaCard
to Carmel, a number of simplifying assumptions were made to facilitate the
(manual) translation from JavaCard to Carmel. In particular: dynamic method
lookup (via the methodLookup function) was replaced by a simpler notion by as-
suming that inherited methods are (syntactically) copied to the relevant classes.
Furthermore, instead of using the address scheme suggested in [6], based on
method and class identities, a simpler addressing scheme is used, based on class
and method names instead. The simpler addressing scheme is sufficient when
the source code of the entire program being analysed is available.

The above simplifying assumptions only change or influence the analysis in
minor ways, but they do make it easier and faster to (manually) convert or con-
struct benchmark programs that can be used with the prototype implementation
of the analysis.

In Section 7.2 consequences of the above choices are discussed along with
suggestions for improvements.

7.1 Using the Prototype

In Listing 1 we give an example of a small CarmelLight program. Note that
the #direct{...} command used at the bottom of Listing 1 is used to send
clauses directly to the solver, ie. with no interference from the constraint gen-
erator. In this example it is used to encode the maximum stack height; this
also ensures that the universe of the solver contains encodings of all the stack

SECSAFE-IMM-004-1.0 18

program Test {

class sigma1

{

method m1 1

{

push 42

return

}

method m2 1

{

new sigma1

push 1

invokevirtual (sigma1,m1,1)

store 1

return

}

}

}

#direct{

U(suc(suc(suc(suc(suc(suc(suc(suc(suc(suc(zero)))))))))))

}

Listing 1: Example program in CarmelLight

positions of relevance. Due to the way the solver is implemented and becuase
the stack positions are encoded as nested terms, only the maximum number
needs to be specified, the remaining numbers, ie. all subterms of the encoding,
are automatically constructed by the solver.

Listing 2 shows an excerpt of the constraints generated by the prototype im-
plementation. The excerpt shows the clauses generated for a method invocation.
The full set of constraints generated is shown in Appendix A.1.

Listing 3 illustrates the output from the solver. The excerpt illustrates the
solution for the stack and for the local heap. The full solution is shown in
Appendix A.2.

7.2 Testing the Prototype

The prototype has been tested on a number of small ad-hoc test programs as
well as two Sun JavaCard demo applets: Wallet and JavaPurse (translated from
JavaCard to CarmelLight by hand).

The Wallet applet consists of approximately 200 lines of CarmelLight code
while the JavaPurse has around 1300 lines of CarmelLight code. Both applets
make use of various JavaCard API’s; a simplified model of the relevant API
calls (taking only rudimentary control flow into account) were implemented in
order to carry out the tests.

Solving the constraints generated for the two test programs took approxi-
mately 4 seconds and 22 seconds for the Wallet and JavaPurse respectively. An

SECSAFE-IMM-004-1.0 19

/* ("sigma1","m2",3): invokevirtual (sigma1,m1) */

(A r. S(cl_sigma1,m2,pc_3,suc(zero),r) => L(r,m1,pc_1,var_0,r)) &

(A r. A a. S(cl_sigma1,m2,pc_3,suc(zero),r) &

S(cl_sigma1,m2,pc_3,zero,a) => L(r,m1,pc_1,var_1,a)) &

1 &

(A r. A end. A a. S(cl_sigma1,m2,pc_3,suc(zero),r) &

End(r,m1,end) & S(r,m1,end,zero,a) =>

S(cl_sigma1,m2,pc_4,zero,a)) &

(A x. A y. A i. A a. x = suc(suc(i)) & y = suc(i) &

S(cl_sigma1,m2,pc_3,x,a) => S(cl_sigma1,m2,pc_4,y,a)) &

(A x. A a. L(cl_sigma1,m2,pc_3,x,a) => L(cl_sigma1,m2,pc_4,x,a)) &

Listing 2: Excerpt of constraints generated for example program

Relation S/5:

(cl_sigma1, m2, pc_4, zero, INT),

(cl_sigma1, m2, pc_3, suc (zero), cl_sigma1),

(cl_sigma1, m2, pc_3, zero, INT),

(cl_sigma1, m2, pc_2, zero, cl_sigma1),

(cl_sigma1, m1, end_sigma1_m1, zero, INT),

(cl_sigma1, m1, pc_2, zero, INT),

Relation L/5:

(cl_sigma1, m2, pc_5, var_1, INT), (cl_sigma1, m1, pc_2, var_1, INT),

(cl_sigma1, m1, pc_2, var_0, cl_sigma1),

(cl_sigma1, m1, pc_1, var_1, INT),

(cl_sigma1, m1, pc_1, var_0, cl_sigma1),

Listing 3: Excerpt of solver output for example program

SECSAFE-IMM-004-1.0 20

estimate1 of the memory used by the solver for the Wallet program is approxi-
mately 15 MB and approximately 30 MB for the JavaPurse program.

While the above few tests do not constitute a formal and rigorous benchmark
test, they do seem to indicate that the analysis will be fast enough to be use-
ful. Memory consumption on the other hand should be watched carefully and
methods for lowering the space requirements of the analysis, eg. those discussed
in Section 6, should be investigated and possibly implemented if the analysis is
to be used on realistic sized programs.

The current prototype, while helpful for giving a first impression of the
analysis’ precision and performance, is not adequate for performing a systematic
benchmark test of the analysis and the various optimisation strategies discussed
in Section 6. The scarcity of “real world” examples and the work required to
manually translate these into CarmelLight is prohibitive for such a study. Fur-
thermore, for such experiments to be useful it would be necessary to implement
better and more complete models of the API’s and the JavaCard Runtime En-
vironment (JCRE) in the semantics and the analysis. Currently there is work
under way at Imperial College (London) to model parts of the API’s and the
JCRE in the operational semantics, cf. [9]. Work has also been done, by Luke
Jackson at Imperial College, on implementing a Carmel interpreter, including of
course a parser for the full Carmel language, cf. [5]. This opens for the possibil-
ity of implementing the constraint generation described in this paper on top of
that system, thus overcoming at least the problems created by basing the pro-
totype on CarmelLight. It could also pave the way for a systematic benchmark
testing of both constraint generation and optimisation strategies.

8 Conclusion and Future Work

In this paper we have shown how the Flow Logic specification of a control flow
analysis for Carmel, defined in [4], can be converted to a constraint generator
format over the Alternation-free Least Fixed-Point (ALFP) logic. As a part
of this conversion we have discussed how the abstract domains used by the
Flow Logic specification can be represented in ALFP and we have sketched a
proof of semantic soundness for the conversion. Strategies for improving the
generated constraints with respect to time and/or space needed to solve them
were briefly reviewed and a prototype implementation, generating constraints
for the Succinct Solver, was discussed.

In the near future the extensions of the control flow analysis specified in [3]
will be converted to a similar constraint generator format. This work is already
under way, focusing at first on the ownership and exception analyses; in [2] a
brief overview of the implementation of ownership analysis is given and a way
of using it to verify that Carmel programs do not violate the JCRE firewall is
discussed. Proving the semantic correctness of the entire conversion is also a
priority in the short term.

In the longer term, a better prototype should be implemented. This should
include a better parser (for the full Carmel language), good support for exten-
sions and more ways of manipulating and displaying the analysis result. Most,
if not all, of these features are already available in the Carmel Interpreter by

1Based on program allocation during execution, as reported by the Unix commands top

and ps.

SECSAFE-IMM-004-1.0 21

Luke Jackson [5]. It would be a very straightforward task to implement the con-
straint generation described in this document on top of the system described
in [5]. For these reasons we believe that the mentioned system would form an
ideal basis for a vastly improved prototype implementation of the constraint
generation better suited for handling programs of realistic size.

References

[1] Mikael Buchholtz, Hanne Riis Nielson, and Flemming Nielson. Experiments
with Succinct Solvers. SECSAFE-IMM-002-1.0. Also published as DTU
Technical Report IMM-TR-2002-4, February 2002.

[2] René Rydhof Hansen. A prototype tool for JavaCard firewall analysis. In
Nordic Workshop on Secure IT-Systems, NordSec’02, Karlstad, Sweden,
November 2002. To appear.

[3] René Rydhof Hansen. Extending the Flow Logic for Carmel. SECSAFE-
IMM-003-1.0, 2002.

[4] René Rydhof Hansen. Flow Logic for Carmel. SECSAFE-IMM-001-1.5,
2002.

[5] Luke Jackson. Carmel interpreter. Web page, 2002. URL: http://www.
doc.ic.ac.uk/~siveroni/secsafe/docs/interpreter/.

[6] Renaud Marlet. Syntax of the JCVM Language To Be Studied in the SecSafe
Project. SECSAFE-TL-005-1.7, May 2001.

[7] Flemming Nielson and Helmut Seidl. Control-Flow Analysis in Cubic Time.
In Proc. ESOP’01, April 2001. SECSAFE-DAIMI-006-1.0 (preprint).

[8] Flemming Nielson and Helmut Seidl. Succinct solvers. Technical Report
01-12, University of Trier, Germany, 2001.

[9] Igor Siveroni and Chris Hankin. A Proposal for the JCVMLe Operational
Semantics. SECSAFE-ICSTM-001-2.2, October 2001.

A Example

A.1 Generated Constraints

/* Carmel Constraint Generator [version 1.14-alpha] */

/* Constraints for program: Test */

/* Class: sigma1 */

/* Method: (sigma1,m1) */

/* ("sigma1","m1",1): push 42 */

S(cl_sigma1,m1,pc_2,zero,INT) &

(A y. A i. A a. y = suc(i) & S(cl_sigma1,m1,pc_1,i,a) =>

S(cl_sigma1,m1,pc_2,y,a)) &

(A x. A a. L(cl_sigma1,m1,pc_1,x,a) => L(cl_sigma1,m1,pc_2,x,a)) &

SECSAFE-IMM-004-1.0 22

/* ("sigma1","m1",2): return */

(A a. S(cl_sigma1,m1,pc_2,zero,a) =>

S(cl_sigma1,m1,end_sigma1_m1,zero,a)) &

End(cl_sigma1,m1,end_sigma1_m1) &

/* Method: (sigma1,m2) */

/* ("sigma1","m2",1): new sigma1 */

S(cl_sigma1,m2,pc_2,zero,cl_sigma1) &

(A y. A i. A a. y = suc(i) & S(cl_sigma1,m2,pc_1,i,a) =>

S(cl_sigma1,m2,pc_2,y,a)) &

(A x. A a. L(cl_sigma1,m2,pc_1,x,a) => L(cl_sigma1,m2,pc_2,x,a)) &

/* ("sigma1","m2",2): push 1 */

S(cl_sigma1,m2,pc_3,zero,INT) &

(A y. A i. A a. y = suc(i) & S(cl_sigma1,m2,pc_2,i,a) =>

S(cl_sigma1,m2,pc_3,y,a)) &

(A x. A a. L(cl_sigma1,m2,pc_2,x,a) => L(cl_sigma1,m2,pc_3,x,a)) &

/* ("sigma1","m2",3): invokevirtual (sigma1,m1) */

(A r. S(cl_sigma1,m2,pc_3,suc(zero),r) => L(r,m1,pc_1,var_0,r)) &

(A r. A a. S(cl_sigma1,m2,pc_3,suc(zero),r) &

S(cl_sigma1,m2,pc_3,zero,a) => L(r,m1,pc_1,var_1,a)) &

1 &

(A r. A end. A a. S(cl_sigma1,m2,pc_3,suc(zero),r) &

End(r,m1,end) & S(r,m1,end,zero,a) =>

S(cl_sigma1,m2,pc_4,zero,a)) &

(A x. A y. A i. A a. x = suc(suc(i)) & y = suc(i) &

S(cl_sigma1,m2,pc_3,x,a) => S(cl_sigma1,m2,pc_4,y,a)) &

(A x. A a. L(cl_sigma1,m2,pc_3,x,a) => L(cl_sigma1,m2,pc_4,x,a)) &

/* ("sigma1","m2",4): store 1 */

(A a. S(cl_sigma1,m2,pc_4,zero,a) => L(cl_sigma1,m2,pc_5,var_1,a)) &

(A x. A i. A a. x = suc(i) & S(cl_sigma1,m2,pc_4,x,a) =>

S(cl_sigma1,m2,pc_5,i,a)) &

(A x. A a. x != var_1 & L(cl_sigma1,m2,pc_4,x,a) =>

L(cl_sigma1,m2,pc_5,x,a)) &

/* ("sigma1","m2",5): return */

(A a. S(cl_sigma1,m2,pc_5,zero,a) =>

S(cl_sigma1,m2,end_sigma1_m2,zero,a)) &

End(cl_sigma1,m2,end_sigma1_m2)

&

/* Special Constraints */

U(suc(suc(suc(suc(suc(suc(suc(suc(suc(suc(zero)))))))))))

Listing 4: Constraints generated for example program

A.2 Solver Output

The Universe: (cl_sigma1, m1, pc_2, zero, INT, pc_1, end_sigma1_m1,

m2, pc_3, suc (zero), var_0, var_1, pc_4, pc_5, end_sigma1_m2,

suc (suc (suc (suc (suc (suc (suc (suc (suc (suc (zero)))))))))),

suc (suc (suc (suc (suc (suc (suc (suc (suc (zero))))))))),

suc (suc (suc (suc (suc (suc (suc (suc (zero)))))))),

SECSAFE-IMM-004-1.0 23

suc (suc (suc (suc (suc (suc (suc (zero))))))),

suc (suc (suc (suc (suc (suc (zero)))))),

suc (suc (suc (suc (suc (zero))))),

suc (suc (suc (suc (zero)))),

suc (suc (suc (zero))), suc (suc (zero)))

Relation S/5:

(cl_sigma1, m2, pc_4, zero, INT),

(cl_sigma1, m2, pc_3, suc (zero), cl_sigma1),

(cl_sigma1, m2, pc_3, zero, INT),

(cl_sigma1, m2, pc_2, zero, cl_sigma1),

(cl_sigma1, m1, end_sigma1_m1, zero, INT),

(cl_sigma1, m1, pc_2, zero, INT),

Relation suc/2:

(suc (zero), zero), (suc (suc (zero)), suc (zero)),

(suc (suc (suc (zero))), suc (suc (zero))),

(suc (suc (suc (suc (zero)))), suc (suc (suc (zero)))),

(suc (suc (suc (suc (suc (zero))))), suc (suc (suc (suc (zero))))),

(suc (suc (suc (suc (suc (suc (zero)))))), suc (suc (suc (suc (suc

(zero)))))),

(suc (suc (suc (suc (suc (suc (suc (zero))))))), suc (suc (suc (suc

(suc (suc (zero))))))),

(suc (suc (suc (suc (suc (suc (suc (suc (zero)))))))), suc (suc (suc

(suc (suc (suc (suc (zero)))))))),

(suc (suc (suc (suc (suc (suc (suc (suc (suc (zero))))))))), suc

(suc (suc (suc (suc (suc (suc (suc (zero))))))))),

(suc (suc (suc (suc (suc (suc (suc (suc (suc (suc (zero)))))))))),

suc (suc (suc (suc (suc (suc (suc (suc (suc (zero)))))))))),

Relation L/5:

(cl_sigma1, m2, pc_5, var_1, INT), (cl_sigma1, m1, pc_2, var_1, INT),

(cl_sigma1, m1, pc_2, var_0, cl_sigma1),

(cl_sigma1, m1, pc_1, var_1, INT),

(cl_sigma1, m1, pc_1, var_0, cl_sigma1),

Relation End/3:

(cl_sigma1, m2, end_sigma1_m2), (cl_sigma1, m1, end_sigma1_m1),

Relation U/1:

(suc (suc (suc (suc (suc (suc (suc (suc (suc (suc (zero))))))))))),

Relation suc-/2:

(suc (suc (suc (suc (suc (suc (suc (suc (suc (zero))))))))), suc

(suc (suc (suc (suc (suc (suc (suc (suc (suc (zero))))))))))),

(suc (suc (suc (suc (suc (suc (suc (suc (zero)))))))), suc (suc (suc

(suc (suc (suc (suc (suc (suc (zero)))))))))),

(suc (suc (suc (suc (suc (suc (suc (zero))))))), suc (suc (suc (suc

(suc (suc (suc (suc (zero))))))))),

(suc (suc (suc (suc (suc (suc (zero)))))), suc (suc (suc (suc (suc

(suc (suc (zero)))))))),

(suc (suc (suc (suc (suc (zero))))), suc (suc (suc (suc (suc (suc

(zero))))))),

(suc (suc (suc (suc (zero)))), suc (suc (suc (suc (suc (zero)))))),

SECSAFE-IMM-004-1.0 24

(suc (suc (suc (zero))), suc (suc (suc (suc (zero))))),

(suc (suc (zero)), suc (suc (suc (zero)))),

(suc (zero), suc (suc (zero))),

(zero, suc (zero)),

Listing 5: Result from solver for example program

SECSAFE-IMM-004-1.0 25

