Flow Logic for Carmel

Authors : René Rydhof Hansen
Date . June 28, 2002
Number : SECSAFE-IMM-001-1.5

Classification : Public

1 Introduction

The aim of this paper is to outline a framework for rapidly creating analyses
of the Java Card Virtual Machine Language (JCVML). This is illustrated by
the development of a simple control flow analysis for a subset of JCVML, called
Carmel. The work was primarily motivated by the work of Freund and Mitchell
on formalising the Java Virtual Machine Language (JVML) bytecode verifier
as a typesystem, cf. [3], and a primary goal for the present work has been to
illustrate how certain typesystems can be rewritten as Flow Logic specifications,
while retaining the succinctness and elegance of the typesystem, and to enhance
the Flow Logic notation where needed.

The rest of the paper is organised in the following way. Section 2 describes
and discusses the subset of JCVML/Carmel used in this paper, cf. [3, 7, 12]. In
Section 3 the abstract domains underlying the analysis are examined. Following
that the control flow analysis and specification are discussed in Section 4, while
Section 5 is devoted to formal theoretical results concerning the analysis. Sec-
tion 6 concludes the document by discussing a number of directions for future
work, including enhancements, formal results, and applications of the analysis.

2 The Language

The language of interest in this paper is an abstraction or a “rational recon-
struction” of JCVML as described and defined in [7]. This language is called
Carmel and in [12] a small step semantics is given for it. Carmel is an ab-
straction, or a rational reconstruction, of JCVML in the sense that a number
of instructions have been generalised and/or merged, thus reducing the overall
number of instructions to 30 while retaining the expressiveness of the original
JCVML.

Although the work in this paper is in part motivated by and based on the
work of Freund and Mitchell, the analysis we present is a naive interprocedural
analysis whereas the typesystem of Freund and Mitchell is intraprocedural, cf.
Appendix A of [7]. The analysis is nalve in the sense that method invocations
and returns are handled much like unconditional jumps. A less nalve treatment
can be obtained by applying standard techniques, cf. [9].

In what follows, a number of technical details have been left out, such as
specific representation of programs and packages, pending finalisation of the
semantics for these.

3 Abstract Domains

The abstract domains are based on a simplified version of the concrete domains
used in the semantics, cf. [12]. The simplified domains ignore semantic informa-
tion that is not pertinent to the analysis. This minimises unnecessary notation
and increases legibility of both analysis and theoretical results.

For the simple analysis, objects are abstracted into their class, thus object
references are modeled as classes, similar to the class object graphs of [14]:

ObjRef = Class

In order to enhance readability we write (Ref o), rather than merely o, for
object references. Similarly arrays are abstracted into their elementtype:

ArRef = Type

We write (Ref (array 7)) rather than 7 for array references. Note that (Ref o)
is used exclusively for object references and (Ref (array 7)) exclusively for array
references.

References are either object references or array references:

Ref = ObjRef 4 ArRef

An obvious improvement to the precision of the analysis would be to model
object and array references using the equivalent of the textual object graphs as
described in [14], however, in order to prove the correctness of the analysis, it
would then require additional information in the semantics about where objects
and arrays are created.

In Java Card applications (ie. applets) objects and arrays are usually only
created once, during the installation, and then reused throughout the lifetime
of the applet, cf. [1, 6]. This would seem to make (the equivalent of) textual
object graphs ideally suited for the analysis of applets.

Following the semantics and given the fact that subroutines (and thus return
addresses) are not needed, values are taken to be either numerical values or
reference values and abstract values to be sets of such values:

Val = Num + Ref Val = P(Val)

Objects themselves are modeled as mappings from the field ID’s of the object,
to the set of abstract values possibly contained in that field

Obj = FieldID — Val

Arrays are modeled in the simplest possible way, namely as an abstract value.
This means that the structure (and length) of the array is abstracted away:

Array = Val

While other, more precise, abstract representations of arrays are possible, they
would also require a more precise analysis of integer values used as indices for
arrays, possibly even a full dataflow analysis. For this reason we have chosen
the above representation as basis for the simple control flow analysis described
in this paper.

SECSAFE-IMM-001-1.5 2

Adpresses consist of a method and a program counter, making adresses unique
in a program. In order to correctly handle return values from method in-
vocations a special “placeholder” address is defined for every method. This
placeholder address is encoded using a special END-token instead of the regular
program counter.

Addr = Method x (N & {END})

The first instruction in a method is assumed to be at program counter 1 and
we write (m, END,,) for the placeholder address belonging to the method m.

We let |m| denote the arity of method m, meaning the number of arguments
the method expects on the operand stack.

In order to model the memory organisation of the Java (Card) Virtual Ma-
chine, we must model the local heap (local variables for each method), the
operand stack (also one for each method) and the global heap.

The local heap is modeled as a (curried) map from adresses to (local) vari-
ables to abstract values. Thus in our model there is a local heap associated with
every instruction in a method. This is in keeping with Freund and Mitchells
approach, cf. [3]. Less precise, and less costly, analyses are possible, for instance
by merging the analysis information for all instructions in a given method.
Other merging strategies, eg. merging at basic blocks, could be considered for
balancing cost and precision.

LocHeap = Addr — Var — Val
For L € Lc@p we shall write i/(ml,pcl) C I:(mg,pq) to mean
Va € dom(L(my, per)) : L(ma, per)(z) E L(ma, pes)(x)

and ﬁ(ml,pcl) iz} ﬁ(mg,p@) to mean

Yy € dom(L(m1,per)) \ {z} : L(m1,per)(y) T L(ma, pea)(y)

Note that local variables are denoted by natural numbers and zero, ie. Var = Ng.

We now turn to the operand stack. Since the model has to be able to cope
with potentially infinite operand stacks, we use the following domain as the
basis for the stack model:

Val® = Val* U Val*

However, in anticipation of later developments and applications of the analy-
sis, rather than using the above domain directly, we use it to induce a more
convenient domain via a Galois connection:

L v —
Val® == (Val")T

where the abstraction function, «, simply acts as the identity on finite stacks
and maps infinite stacks to top.

With the basic domain for abstract stacks in place, we now associate an
abstract operand stack with every instruction in a method in order to track
operations on the stack in that method:

Stack = Addr — (Val*)T

SECSAFE-IMM-001-1.5 3

Elements of (\75|*)T are written much in the same style as SML lists, thus
(A; = Ay oo 0 X) € (\7&]*)—r represents a stack with A; € Val as its top
element and X € Val* as the “bottom” of the stack. The empty stack is denoted
by €. We introduce the following ordering on abstract stacks, Ay :: --- 1 A, and
By - By, from (\73\|*)T:

(Ay - A E(Byii-- it Bpy) <=
mZn/\ViE{17...7n}:Ai§Bi

In the interest of succinctness we shall abuse the above notation slightly by
writing (Ao :: -+t Ap) C L(mg, pco)[0..n] as a shorthand for

Vie {07 . 'an} : A’L - i(m07p60)(7:)

The abstract global heap comprises two components: an object component,
keeping track of instance fields of individual objects, and a static component,
that tracks the values of static fields for each class. The static component is
taken to be a map from field ID’s to abstract values:

StaHeap = FieldID — Val

and the object component is taken to be a map from references to abstract
objects and arrays:

Heap = (ObjRef — Obj) + (ArRef — Array)

By simple changes of the definitions of adresses and object references, a
variety of analyses are possible ranging from the rather cheap and imprecise to
the prohibitively expensive but very precise analyses.

4 Flow Logic Specification

In this section we describe and discuss the Flow Logic specification of a simple
Control Flow Analysis of Carmel. First we discuss the general form of the
specification. Following that a few clauses are discussed at length and finally
the full specification is given. The full specification is split into several parts,
corresponding to the language hierarchy described in [5] with the exception that
we do not distinguish between single-word and multi-word instructions.

The judgements and clauses discussed in the following all concentrate on
specifying an acceptable analysis for single instructions. While not formalised
yet, the intention is that a program (or a package) consists of a number of
classes, each containing a number of methods. In order for an analysis to be
acceptable with respect to a package, it should be acceptable with respect to
every instruction (as detailed in the following sections) in every method in every
class in the package.

4.1 The Judgements

The Flow Logic framework can be seen as a “specification approach” to static
analysis, rather than an “implementation approach”. In the framework, rather

SECSAFE-IMM-001-1.5 4

than detailing how a particular static analysis is to be carried out, it is specified
what it means for an analysis result (or rather a proposed analysis result) to be
acceptable (correct) with respect to a program. Flow Logic specifications are
usually classified as either verbose or succinct according to the style of specifica-
tion: succinct resembling the style of type-systems in only reporting “top-level”
information and verbose more like traditional data flow and constraint based
analyses in recording all internal flows. The specification in this paper is a ver-
bose specification. We shall not go into further detail with the framework here,
merely refer to [8] and [11] for further information.

The judgements of the Flow Logic specification for the analysis of Carmel
will be on the form

(K,H,L,S) |= addr : instr

where S € SE@, L€ L(@m H e H/ea\p, K € St?l—Em addr € Addr and
instr is the instruction at addr. Intuitively the above states that (K, H, L, S)
is an acceptable analysis for the instruction instr at address addr. A detailed
discussion of the clauses and judgements for Carmel are given in the following
sections.

Note that while some of the Carmel instructions explicitly give the type(s)
of their argument(s), this information is ignored in the current analysis. We
believe that in a later stage, the analysis can, and should, be made more precise
by also taking type information into account.

4.2 A Few Interesting Clauses

In this section we discuss a number of clauses in great detail, so as to explain
and discuss the used notation and conventions. This should also give an insight
into how the analysis works. In Section 4.3 the full specification is given.

4.2.1 The push Instruction

We wish to specify the analysis for the push instruction, ie. we wish to specify
the following:
(K, H,L,8) |= (mo, peo) : push ¢ v

The push instruction simply pushes its argument, v, onto the top of the current
stack, S(mo,pco), giving rise to a new stack: {v} 1 S(mg,pcy). The new stack
is then made available to the next instruction (at (mg, pco + 1)), thus:

{v} = S(mo,pco) [S(mo,pco +1)

Furthermore, the push instruction does not alter any local variables, therefore
the local heap is made available to the next instruction with no modification:

i’(m(%pco) E i’(m(%pco + 1)

Combining the above we have the following specification for the push instruc-
tion: o
(K,H,L,S) = (mg,pco) : push t v
iff {v} = S(mo,peo) T S(mo,peo + 1)
L(mo,pco) E L(mo, peo + 1)

SECSAFE-IMM-001-1.5 5

4.2.2 The store Instruction

The next instruction of interest is the store instruction:
(K,H,L,S) = (mo,pco) : store ¢ x

The store instruction saves the top element of the stack in the variable given
as argument to the instruction. In order for this to work, there must be at least
one element on the stack. We introduce the notation

A X a8(myg, peo) :

as a succint way of expressing that the abstract stack should be on the form
A :: X, ie. it should have at least one element. Furthermore, it acts as a binder
for the variables A and X so that they may subsequently be referred to.

The store instruction transfers the bottom of the stack to the stack of the
next instruction: X C S (mo,pco + 1). The top element is stored in the local
heap (for the next instruction) at the variable given as argument to the store
instruction: A C L(myg, pco + 1)(z). Finally the variables in the local heap that
were not modified by the instruction (all but x) are transferred to the next
instruction: L(my, pco) Cia} L(mo,pco +1).

Putting all of the above together we arrive at the clause below for store
instructions o

(K,H,L,S) E (mo,pco) : store t x
iff A X <a8(mo,peo)
X C S(mo,pco + 1)
AL L(mo, pco + 1)(=)
L(mo,pco) Eqzy L(mo,peo +1)

4.2.3 The putfield Instruction

Next is the specification for the putfield instruction:
(K,H,L,S) = (mo,pco) : putfield f

The putfield instruction transfers the value of the top element of the stack to
the field named as argument to the instruction in the object referenced in the
second element of the stack. Thus the stack must contain at least two elements:

A:B:: ng(mo,pco) :

The specific object to be accessed is resolved at runtime, and a reference to that
object is stored in the second (from the top) element of the stack. The value of
the top element is then stored in the field of the object so referenced:

V(Ref ') € B: AC H(Ref ¢/)(f.id)

Here we use the abstract global heap to hold information about the fields of
abstract objects. As noted in Section 3 objects are abstracted into their class.
Thus field information for all objects of the same class is merged and stored in
the abstract global heap.

The bottom of the stack is then transferred to the next instruction:

X C S(mog,pco + 1)

SECSAFE-IMM-001-1.5 6

and since no local variables were modified, the abstract local heap is transferred
unchanged to the next instruction

L(mo, pco) € L(mo, peo + 1)
We then arrive at the following clause for putfield instructions:

(k,ﬁ,i,g) E (mo,pco) : putfield f
iff A:B:: ng(mo,pco) :
V(Ref ') € B: A C H(Ref ¢’)(f.id)
X C S(mg,pco + 1)

L(mo,pco) E L(mo,pco + 1)

4.2.4 The invokevirtual Instruction

Finally we discuss the specification for the invokevirtual instruction:
(K,H,L,S) = (mo,pco) : invokevirtual m

In order to call an instance method, the invokevirtual instruction is used.
Arguments to the method is found at the top of the stack, and as was the case
for the putfield instruction, a reference to the specific object containing the
invoked method is found on the stack, immediately following the arguments to
the method:)
Ay eee Ay B X <5 (mo, peo)
Next a method lookup is needed in order to find the actual method that is
executed:
m,, = methodLookup(m.id, o’)

The arguments are transferred to the called method as local variables of the
called method. Furthermore a reference to object containing the called method
is passed as the first local variable (in effect a this pointer):

{Ref 0')} 2 Ay 12+ 1 Ay © L(my, 1)[0..]my]

When a method invocation returns, there are two possibilities: either it does
not return a value, ie. it has return type void, or it does return a value. In the
first case, m.returnType = void, we simply copy the rest of the stack on to the

next instruction:
m.returnType = void =

X E S(mOaPCO + 1)

In the latter case, m.returnType # void, the return value is the top element
of the stack of the invoked method. In order to handle multiple returns from
the invoked method correctly a special address is used, indicated by the END-
token discussed in Section 3; it is the responsibility of the clause for the return
instruction to ensure, that all the possible stacks at all possible return instruc-
tions are transferred to the stack at the special address.

In order for the invoking method to access the return value, it must be
transferred from the top of the stack of the invoked method to the top of the
stack of the invoking method (less the arguments and the object reference):

m.returnType # void =
T:Y aS8(my,END,,,) : T :: X C S(mg,pco + 1)

SECSAFE-IMM-001-1.5 7

Finally, none of the local variables (of the invoking method) have been altered
and are therefore passed on to the next instruction:

i’(mOapCO) E i’(mOapCO + 1)

Joining the above equations we obtain the following clause for invokevirtual
instructions:

(IA(,fI,IAJ,SA’) E (mo,pco) : invokevirtual m
it Ay A|m‘ =B ng(mo,pco) :
V(Ref ¢') € B :
m, = methodLookup(m.id, ’)
{(Ref o')} 2 Ay 22+ 2 Ay T L(my, 1)[0.]my]
m.returnType # void =
T ::Y <S(my, END,y,,) : T :: X C S(mo,pco+ 1)
m.returnType = void =
XC S(mo,pco +1)
L(mo, peo) T L(mo, peo + 1)

4.3 Full Specification

In this section the Flow Logic specification for all the supported instructions
is given. It is divided into categories matching those of [5] with the exceptions
noted in beginning of Section 4.

4.3.1 Core Language

The Core Language consists of instructions for stack management, arithmetic
operations, control transfer and local variable access.

The basic stack management instructions considered are: push, pop, dup,
and swap. Note that the push instruction gives an explicit type for its argument:
t. This type-information is currently ignored by the analysis, as explained in
Section 4.1. o

(K,H,L,S) = (mo,pco) : push t v
iff {v} = S’(mo,pcAo) C S(mo,pco + 1)
L(mg, pco) = L(mo,pco + 1)

(K, H,L,5S) = (mo,pco) :pop n
iff Ao Ay X <9S(mo, peo)
X & 5(mo,pco +1)
L(mOaPCO) EL(mOapCO+1)

SECSAFE-IMM-001-1.5 8

(K,H,L,S) = (mo,pco) : dup m n
iff Sy Sy X <8(mo, peo)
Ayt A, <8
Apgr oot Ap Sy
S1::S5y:8 = XC S(mo,pco +1)
I:(mo,pco) Eﬁ(mo,pco+1)

(K, H,L,5S) |= (mo,pco) : swap m n
iff Sy S ng(mo,pco) :
Ay oot A Sy
Apgr -0 Ap Sy
Sy S X S’(mo,pco +1)
L(mo,pco) € L(mo, peo +1)

The 4 function below is the abstract equivalent of the arithmetic operators. In
particular, d,n0p is the abstract representation of the unary operator unop and
similarly for binary operators. The exact definition of § depends on how precise
the data flow needs to tracked. It is assumed that both functions are total.
Error conditions are signaled by throwing an exception.

(Ka Ha ia S) ': (mpvpco) :numop ¢t unop ti)pt
iff A X <S(mo,peo) :
(iunop(A) X AE S(mo,pCo + 1)
L(mo, pco) T L(mo,pco + 1)

(K,H,L,S) = (mo,pCO)A: numop t binop i,
iff Ay Ayt X <aS(mo,peo) :
(ibinop(Alz Ag) = X E S(mo, pco + 1)
L(mOaPCO) E L(mOapCO + 1)

In the above, the explicitly arugment types are ignored as explained earlier.
Conditional and unconditional branching is taken care of by the next few
instructions. Note that the analysis of the conditional branching instructions
simply assume that control can flow to all branches. This conservative, and
rather imprecise, etsimate can be mitigated by taking data flow into account.
Below there are two variants of the if instruction: one variant compares the
two top elements on the stack, and the other variant compares the top element

SECSAFE-IMM-001-1.5 9

on the stack to either 0 or null.

(KaHaL S) ': (m()vpco) goto L
iff (mOaPCO) E S(mOaL)
(mOapCO EL(mOaL)

(K,ﬁ,ﬁ,g) E (mo,pco) : if t cmpop goto L
iff Ap o As ng(mo,pco) :
XLC S(mo,pco +1)
X E S(mo,L)
L(mo,pco) € L(mo, peo +1)
L(mo, pco) C L(mg, L)

(K,H,L,S) = (mo,pco) :if ¢t empop nullCmp goto L
iff A= XdS(mo,pco)'
X € S(mo,peo + 1)
ng(moa)

é(mo,pC()) E @(mOapCO + 1)
L(mOapco) E L(mOa L)

(K,H,L,5S) = (mo,pco) : lookupswitch ¢ (k;=>L;)?, default=>Lg
iff A X <S(mo,peo) :
Vie {0,1,...,n}:
X [S’(mo, Li)
L(mo,pco) T L(mo, L;)

(K,H,L,5) = (mo,pco) : tableswitch ¢ [=>(L;)?, default=>L,
iff A X <S(mo,peo) :
Vie{0,...,n,n+1}:
X [S’(mo, Li)
i/(mo,pco) C f,(mO,Li)

The next batch of instructions handle access to local variables. This includes
instructions for loading and storing values in local variables and also for incre-

SECSAFE-IMM-001-1.5 10

menting the numerical value of a local variable.

(K,H,L,5) = (mo,pco) : load t

iff L(mOapCO () S(mOapCO) S(mOapCO + 1)

L(mOapCO E L(mOapCO + 1)

(IA(,fI,I:,SA’) E (mo,pco) : store ¢ x
iff A X <aS(mo,peo)
XC S(mo,pco +1)
AC L(mo,pco + 1)()
L(mao, peo) Cay L(mo,peo +1)

(K,H, Ii:SA*) = (mo,pCQ) sinc t x ¢
iff S(mo,pco) C S(mg,pco + 1)
Sine(L(mao, peo) (@), {e}) © L(mo, peo +1)(x)

bw

(Mo, pco) Cay L(mo,peo + 1)

4.3.2 Object Language

Instructions for object creation and access to instance fields belong to the “Ob-
ject Language”.

First the instructions for performing explicit runtime typechecks. Note that
because the result of an instanceof instruction is either 0 or 1, the analysis
models this by pushing both 0 and 1 onto the stack. Furthermore these instruc-
tions act like conditional branching instrcutions and are analysed as such, ie.
the arguments for the instructions are ignored.

(K,H,L,S) = (mo,pco) : checkcast t
(Mo, peo) T S(mo,pco +1)
Ii(mo,pco) C L(mo,pco +1)
(K,Ifl,li, S) = (mp,pco) : instanceof t
iff A X <aS5(mo,peo) :
{0,1} :: X C S(mo,pco +1)
Ii(mo,pco) C Ii(mo,pco +1)
Next the instruction for creating new instances of classes, ie. objects:
(K,H,L,S) = (mo,pco) : new o
ifft {(Ref o)} =: S’gmo,pco) C S(mo, pco + 1)
default(o) C H(Ref o)
Ii(mo,pco) C ﬁ(mo,pco +1)

where default(o) is defined such that

Vf € instanceFields(o) :
BH (def(f.type)) C default(o)(f.id) if f.initValue = L
BH (f.initValue) C default(o)(f.id) if f.initValue # L

The above makes sure that the fields in a new object are initialised with their
explicit, as indicated in the program, initial values or their default values if no
explicit initial value is given.

SECSAFE-IMM-001-1.5 11

The next clauses deal with access to instance fields. In [7] the instructions
for accessing instance fields have an optional this modifier. The effect of such a
modifier is to access the fields of the particular object that contains the current
method, rather than an object referenced on the top of the stack. We deal with
both cases in separate clauses below.

(IA(,}AI,IAJ,S’) E (mp,pco) :getfield f
iff B: X <S(mg,pco):
Y(Ref ¢') € B : (H(Ref o')(f.id)) = X T S(myg, pco + 1)
I:(mo,pco) C I:(mo,pco +1)
(f(H S) |= (mo, pco) : getfield this f
(R o) e I:(mo,pco)g()) :)
(H(Ref o')(f.id)) :: S(mo, pco) E S(mo, pco + 1)

L(mo,pco) T L(mo, peo + 1)

(K,I:I,Ii,g) E (mo,pco) : putfield f
iff A:B:: qu(mo,pco) :
Y(Ref ') € B: AT H(Ref ¢’)(f.id)
XC S(mo,pco +1)
L(mo,pco) E L(mo,pco + 1)
(K,H,L,S) = (mo,pco) : putfield this f
iff A X a8(mo,peo) :
Y(Ref o) € L(mog, pco)(0) : A C H(Ref o’)(f.id)
X C S(mo,pco + 1)
I:(mo,pco) C I:(mo,pco +1)

Access to static fields (class fields) is handled in much the same way, except
that only the field identifier is needed rather than the full object reference:

(KaHaiag) ': (m()vpco) getStatiC f
iff K(f.id) = S(mo,pco) C S(mo, pco + 1)
L(mOapco) E L(mOapCO + 1)

(K,H,L,S) = (mo,pco) : putstatic f
iff A QS(mo,pco)
AC K(fid)
XC S(mo,pco +1)

ff(mOapcO) E L(mOapCO + 1)

4.3.3 Method Support

The “Method Support” fragment of the language is made up of instructions for
invoking, and returning from, methods.

We first consider the specification for the invokedefinite instruction. For
convenience of notation we split the invokedefinite instruction into two in-
structions, invokestatic and invokespecial, representing the fact that the

SECSAFE-IMM-001-1.5 12

semantics of invokedefinite depends on which (type of) method it is used to
invoke (static or special).

(K,H,L,S) = (mo,pco) : invokestatic m
ifft Ay Ay, s)gqg(mo,pco) :
Ay eeei Ay E L(m, 1)[0.m| — 1]
m.returnType # void =
T:Y a8(m,END,,) : T :: X C S(mo,pco + 1)
m.returnType = void =
X C S(mo,pco + 1)
L(mo, peo) C L(mo, peo + 1)

(K,H,L,5S) = (mo,pco) : invokespecial m
ifft Ay Ay B)gqg(mo,pco) :
B Ay Ay E L(m, 1)[0..ml]
m.returnType # void =
T:Y a8(m,END,,) : T :: X C S(mo,pco + 1)
m.returnType = void =
X E S(mo,pco + 1)
L(mo, peo) C L(mo, peo + 1)

Next the clause for handling the invocation of virtual methods. Note that we ex-
plicitly distinguish between methods that return a value, ie. those methods with
m.returnType # void, and those that do not, ie. where m.returnType = void.

(IA(,fI,IAJ,SA’) E (mo,pco) : invokevirtual m

ifft Ay Ay, o B ng(mo,pco) :
V(Ref ¢') € B :
m, = methodLookup(m.id, o”)
{(Ref o)} 2 Ay 22+ 2 Ay T L(my, 1)[0.]my]

m.returnType # void =
T :Y <S(my, END,,,) : T :: X C S(mo,pco + 1)
m.returnType = void =
X C S(mo, peo + 1)
L(mo,pco) E L(mqg, peo + 1)

The clause for invokeinterface is the same as the clause for invokevirtual.
This is due to the fact that regarding the flow of control there is no real difference
between interface and virtual methods.

(K,f[,ﬁ,S’) E (mo, pco) : invokeinterface m
iff Ayo---c A‘m| B ng(mo,pco) :
V(Ref ') € B:
m, = methodLookup(m.id, ")
{(Ref o')} : Ay 22+ 2 Ay T L(my, 1)[0.]my]
m.returnType # void =
T ::Y a8(my, END,,,) : T :: X T S(mo, peo + 1)
m.returnType = void =
X E S(mo,pco + 1)
L(mq, peo) T L(mo, peo + 1)

SECSAFE-IMM-001-1.5 13

And finally the clauses for returning from a method invocation. Again there are
two cases: one that does not return a value and one that does. The case where
no value is returned is trivial.

(K,f[,ﬁ,g) E (mo, pco) : return
iff true

(K,f[,ﬁ,g) E (mo, pco) : return t
iff A X <S(mo,peo) :
A X C S(mg, END,y,,)

This ends the discussion of the “Method Support”.

4.3.4 Array Support

Array support in Carmel consists of instructions for creating arrays, calculating
the length of an array and for loading and storing values in arrays.

The abstract representation of arrays simply ignores the structure of the
array and treats the array as a simple variable. While rudimentary, this view
of arrays is sufficient for analysing the control flow. By adding a dataflow
component to the control flow analysis, more sophisticated analyses of arrays
would be possible.

First the instruction for creating a new array. Note that the value on top of
the stack, the length of the array to be created, is ignored:

(K,H,L,S) = (mo,pco) : new (array 7)
iff A X <a8(mo,peo) :
{(Ref (array 7))} : X C S(mg, pco + 1)
I:(mo,pco) C I:(mo,pco +1)

Next we have the clauses for handling array length and manipulation of data
in an array. As before, type information is ignored.

(K,ﬁ,f), S) E (mp,pco) : arraylength
if B : X <aS(mo,peo) :
{INT} :: X C S(mo, pco + 1)
L(mo, peo) C L(mo,peo +1)
(K,H,L,S) = (mo,pco) : arrayload ¢
iff A:B:: qu(mo,pco) :
V(Ref (array 7)) € B :
H(Ref (array 7)) :: X T S(mo,pco+1)
L(mo, peo) C L(mo, peo +1)

(K,H,L,S) = (mo,pco) : arraystore t
iff Ay Ay B X a8(mg, peo) :
V(Ref (array 7)) € B :
Ay C H(Ref (array 7))
X E S(mo,pco + 1)
L(mo, peo) C L(mo, peo + 1)

SECSAFE-IMM-001-1.5 14

Note that for arrayload and arraystore the index into the array where a
value is to be loaded from (A) or stored to (As) respectively, is ignored. A more
precise analysis of arrays would be possible if a dataflow component was added
to the control flow analysis.

5 Theoretical Results

5.1 Semantic Soundness

In this section we establish the semantic soundness of the analysis. Soundness
is proved with respect to a slightly simplified version of the semantics defined
n [12]. The simplification is achieved by ignoring the information in the seman-
tics that is not used by the analysis, eg. owner context and type information.
The notation has been adapted accordingly.

The soundness is proved using representation functions, cf. [9] for a discus-
sion of representation functions. The next section will define representation
functions for the domains used in the (modified) semantics and the analysis.
The section following that will state the soundness theorem (in the form of a
subject reduction result) and detail a few cases in the proof.

5.1.1 Representation Functions

Values. The representation function for integer values basically injects the
number into a set:

ﬂNum(n) = {n}

The notion of a location only makes sense relative to a given heap, thus the
representation function for locations is parameterised on a heap, H:

BH (loc) = H (loc).class if H(loc) € Object
Ref (10€) = H (loc).elementType if H(loc) € Array

Values (in the modified semantics) can be either numbers or references, the
representation function for values acts accordingly:

| DBnum(v) if v € Num
Palv) = { 5INfgef(v) if v € Ref

Note that because the representation function for values depends on the rep-
resentation function for references, the representation function for values also
takes a global heap as parameter. This will be the case for any representation
function that depends on the representation function for values (or references).
We introduce a simple partial order on abstract values: Let 01,09 € Val and
define
01 0y iff 9 C 09

Stacks. Stacks are sequences of values and the abstract representation is sim-

ply a sequence of the corresponding abstract values. Let S € Stack such that
S=wv vy,

ﬁéiack(s) = /B\I?al(vl) el 6\1};](’0”)

SECSAFE-IMM-001-1.5 15

A partial order is also introduced on the abstract stacks. Let 51,8, € Stack and
addr € Addr such that S)(addr) = 0y :: --- :: O, and Sy(addr) = o} = --- == 0,
then

S1(addr) C Sy(addr) iff m<nAVie{l,...,m}:0;C 0

Local Variables. The abstract representation of local variables (the local
heap) maps variables to the corresponding abstract value: Let V € LocalVar,
then define

ﬂllf:)cal\/ar(v) = lg\lgal oV
thus in particular Vo € Var: gf . (V) (z) = g (V]z]).
We introduce a pointwise ordering on the abstract local heap. Now let
L1, Ly € LocHeap and addr € Addr then

Ly (addr) C Ly(addr) iff dom(L;(addr)) C dom(La(addr))A
Va € dom(Ly (addr)) : Li(addr) C Lo(addr)

Objects. Abstract objects are mappings from fields (fieldnames) to abstract
values, thus the representation function for objects abstracts away all other
information in the object: Let o € Object and define

ngjed(o) = B, o (o.fieldValue)

and therefore in particular ﬂgbject(o).f = B (o.fieldValue(f.id)). Again we use

a pointwise ordering for abstract objects. Let 61,62 € Obj then

01 C oy iff dom(él) - dom(ég) /\Vf S dom(él) : 51(f) [62(f)

Arrays. The abstract representation of arrays is simply as an abstract value,
with no additional structure. The representation function therefore abstracts
all the values in an array into one abstract value. Let a € Array and define

ﬂ/{lrray (a’) = |_| ﬂ\lfal(a.values(i))

0<i<a.length

The ordering on abstract arrays is the same as for abstract values. Let a1, a5 €
Array then
ap Cay iff a3 Cas

Heaps. The global heap maps locations to objects or arrays. Because loca-
tions are represented in the analysis simply by the class of object or the type
of array they point to in the heap, an abstract location may represent several
different concrete locations. For this reason, the abstract representation of a
heap is the least upper bound of all the concrete objects and arrays having the
same abstract location, ie. all those objects and arrays that belong to the same
class.
Let H € Heap and define

6H63P(H) (Ref J) = |_| 6gbject (H(ZOC))
locedom(H)
BE :(loc)=(Ref)

SECSAFE-IMM-001-1.5 16

and similarly

Btieap(H)(Ref (array 7)) = |_| ﬁfrray (H (loc))
locedom(H)
ﬁgef(loc):(Ref (array 7))

Now for H 1, H, e I-Tea\p we define the following partial order on abstract heaps:

ﬁl E IAJQ iff dom(I:Il) g dom(I:Ig)/\
V(Ref o) € dom(H;) : Hi(Ref o) C Hy(Ref o)

Static Memory. The static memory, or the static heap, holds information on
the static fields of classes, thus it maps (static) field id’s to values. This gives
rise to the following representation function for static memory:

6é{atMem(K) = B\I;Ial oK

The obvious partial order is induced on abstract static memories. Let K, Ky €
StatMem then

kl E KQ iff dom(f(l) g dom(f(g)/\
Vfid € dom(K,) : K1 (fid) C Ko(fid)

Call Stack. Call stacks represent the control flow for Carmel programs. Each
stack frame contains information on the method that “owns” it, the current
program counter in that method, the local heap for that method and finally
the operand stack for the owning method: Let SF = (mq,pcy, Vi,51) o -+
(Muy PCny Vi, S) be such a call stack, we then define the abstract representation
by applying the relevant representation functions pointwise:

6ga118tack(SF) = (ﬂflocal\/ar(‘/l)aﬁgack(sl)) R (ﬂIﬁ)calVar(Vn)aﬁgaCk(Sn))

We also define what it means for such an abstract call stack to be represented
in the analysis, formalised by the Rcanstack relation:

B staok (SF) Reanstack (5, L) iff A)
Vi€ {1’ T 7n} : 6{{30&1\/&(%) - L(miapci) A ﬁéiack(‘s’i) C S(m“pcl)

Frames. A frame is the basic configuration of the semantics. The abstract
representation of such a frame consists of pointwise application of the appropri-
ate representation function on the components of the frame:

5Frame(<K7 Hv SF>) = (ﬂgltatMem (K)a ﬁHeap (H)v ﬂgallStack(SF))

and again we formalise by the relation 7A€Frame what it means for an abstract
frame to be represented:

BFrame(<K7H7‘S’F>) 7%/Flrame (Kvﬁv (L,S’)) lﬁ
ﬁg{atMem(K) CKA ﬁHeap(H) CHA ﬁgallStack(SF) Rcanstack (L, S)

In the following we shall dispense with the subscripts on representation func-
tions.

SECSAFE-IMM-001-1.5 17

5.1.2 Subject Reduction

In this section we formally state and prove the basic soundness result for the
analysis. Following the Flow Logic framework this is done by proving a subject
reduction result. In order to prove subject reduction we first need to prove a
technical lemma that characterises well-formed reduction sequences in the se-
mantics. We start by defining what it means for a configuration in the semantics
to be well-formed:

Definition 1 (Well-Formedness) A frame, (K, H,(m1,pc1,V1,51) = -+ =
(Miy Py Viny Si)), 08 said to be well-formed if and only if

m;.instructionAt(pc;) = invokevirtual mjA
Si = Vi1 it U,y o locg i SIA
H(loc;).class = o;A

m;—1 = methodLookup(m/.id, ;)
m;.instructionAt(pe;) = invokeinterface m/ A
Si = Vi1 i U,y o locg 1 SIA
H(loc;).class = o;A

m;—1 = methodLookup(m/.id, 0;)
m;.instructionAt(pe;) = invokestatic mjA
Si = Vi1 i U,y | SN V
mi—1 = mé’

m;.instructionAt(pe;) = invokespecial m] A

Si = Vi1 i U,y o locg 1 SIA

m;—1 =m

Vie{2,...,n}:

Intuitively the above definition states that a well formed frame is one in which
the control stack is the result of method invocations and returns. These are
indeed the frames of interest when considering a Carmel program, and the defi-
nition merely ensures that we need not consider any pathological control stacks.

The following Lemma shows that well-formedness of configurations is invari-
ant under reduction:

Lemma 2 If (K, H,SF) is well-formed and (K,H,SF) = (K',H',SF’') then
(K',H',SF") is well-formed.

Proof (sketch). By strong mathematical induction on the length of the call-
stack.

The base case, for call stacks of length one, holds vacuously.

For the induction step, a case analysis is used on the instruction that is
executed in the semantic step. There are only five interesting cases, since most
instructions only modify the top element of the call stack. The return instruc-
tion on the other hand, removes the top element of the call-stack, thus reducing
the size of the call-stack, and the case then follows immediately from the induc-
tion hypothesis. The remaining four cases (invokevirtual, invokeinterface,
invokestatic and invokespecial) follow from inspection of the semantics. m

Before we can state the subject reduction theorem, we need the following defi-
nition:

SECSAFE-IMM-001-1.5 18

Definition 3 Let SF = (mq,pc1, V1,51) = -+« 2 (my, pen, Vi, Sp) and define
the address projection, mwaqry, on SF as follows:

Taar(SF) = {(mi,pe;) |i € [1,n]}
We are now finally in a position to prove the subject reduction Theorem:

Theorem 4 (Subject Reduction) Let SF = (m,pc,V,S) :: SF” and I =
m.instructionAt(pc) then if

I = instr

(K,H,SF) = (K',H', SF')

and

6Frame(<K7 Hv SF>) ﬁFrame (K; Hv (ia S))

and
V(m,pe) € maar(SF) : (K, H,L,S) = (m,pc) : instr

and (K, H, SF) is well-formed then

Brrame((K', H', SF')) Revame (K, H. (L, 5))
and (K',H' | SF") is well-formed.

Proof. By case inspection using Lemma 2 for the return instruction. A de-
tailed proof can be found in Appendix A. [

6 Future Work

6.1 Extending the Instruction Set

One of the tasks in the immediate future is to finalise the formalisation details
left out in this paper once the semantics is finalised. In the course of that work,
the set of instructions supported will be gradually expanded to handle all of the
Carmel instructions, including subroutines and support for exceptions. Based
on the observations made in [5] regarding subroutines, it is most likely that
support for them will not be added until late in the project.

Arrays play an important role in Java Card programming, cf. [6] and there-
fore warrant special attention. It is therefore important to study ways of in-
creasing the precision of array analysis.

6.2 Formal Results

In the framework of Flow Logic, the proof of correctness is usually accompanied
by a proof showing the existence of (best) acceptable analyses. Often this is
proved by showing that the set of acceptable analyses is a Moore family.

SECSAFE-IMM-001-1.5 19

6.3 Analysis Features

In order for the control flow analysis discussed in this paper to be useful for
validating security and safety properties in Carmel, a number of additions and
extensions will be needed, eg. exception analysis and ownership analysis. A
number of such extensions are discussed in [4].

Apart from features and support discussed above, a number of “standard”
additions and enhancements to the analysis may prove worthwhile to investigate,
including reachability and escape analyses.

6.4 Implementation Issues

In order to obtain efficient implementations, it is important to study techniques
for reducing the complexity of the analysis. We are currently investigating
alternative and more efficient representations of the stack and local heap, similar
in spirit to that of [13, 2], yet without transforming the language.

Another important way of reducing the complexity of the analysis would
be to apply the sharing and tiling techniques possible for certain Flow Logic
specifications described in [10].

References

[1] Zhiqun Chen. Java Card Technology for Smart Cards. The Java Series.
Addison Wesley, 2000.

[2] Marc Eluard and Thomas Jensen. Towards an operational semantics for
Java Card byte code. SECSAFE-IRISA-001-0.1, February 2001.

[3] Stephen N. Freund and John C. Mitchell. A Formal Framework for the Java
Bytecode Language and Verifier. In ACM Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA’99, pages
147-166, Denver, CO, USA, November 1999. ACM Press.

[4] René Rydhof Hansen. Extending the Flow Logic for Carmel. SECSAFE-
IMM-DRAFT. Forthcoming, 2002.

[5] Renaud Marlet. Proposition of a Hierarchy of Languages To Be Studied in
SecSafe. SECSAFE-TL-004-1.0, December 2000.

[6] Renaud Marlet. Typical Code Patterns Found in Java Card Applets To Be
Used as Targets for Program Analysis. SECSAFE-TL-003-1.0, December
2000.

[7] Renaud Marlet. Syntax of the JCVM Language To Be Studied in the
SecSafe Project. SECSAFE-TL-005-1.7, May 2001.

[8] Flemming Nielson. Flow Logic. Web page: http://www.daimi.au.dk/
“fn/FlowLogic.html.

[9] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer Verlag, 1999.

SECSAFE-IMM-001-1.5 20

[10] Flemming Nielson and Helmut Seidl. Control-Flow Analysis in Cubic Time.
In Proc. ESOP’01, April 2001. SECSAFE-DAIMI-006-1.0 (preprint).

[11] Hanne Riis Nielson and Flemming Nielson. Flow Logic: a multi-
paradigmatic approach to static analysis. SECSAFE-DAIMI-001-1.0. Sub-
mitted for publication, February 2001.

[12] Igor Siveroni and Chris Hankin. A Proposal for the JCVMLe Operational
Semantics. SECSAFE-ICSTM-001-2.2, October 2001.

[13] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam,
and Vijay Sundaresan. Soot — a Java Bytecode Optimization Framework.
In CASCONY99, September 1999.

[14] Jan Vitek, R. Nigel Horspool, and James S. Uhl. Compile-Time Analysis of
Object-Oriented Programs. In Proc. CC’92, volume 641 of Lecture Notes
in Computer Science, pages 236-250. Springer Verlag, 1992.

A Proofs

Theorem 4 (Subject Reduction). Let SF = (m,pc,V,S) :: SF” and I =
m.instructionAt(pc) then if

I =1instr
(K,H,SF) = (K',H' /SF")

and

ﬁFrame(<K7 H7 SF>) 7%/Frame (K; IA{v (IA’; S))

and

V(m,pe) € maae(SF) : (K,H,L,S) = (m,pc) : instr
and (K, H, SF) is well-formed then

6Frame(<K/7 H/v SF,>) 7€Frame (K, Zfl, (i, S))
and (K',H',SF') is well-formed.

Proof. First note that well-formedness follows from Lemma 2. We proceed by
case inspection on the instruction.

Case (push): By assumption we have that

I =push t ¢
(K, H, (m,pc,V,S) : SF) = (K,H,(m,pc+1,V,c:: S) :: SF)
and o
(K11, 1, 8) | (m,pe) : push ¢ 1)
and S
BUK, H, (m,pc,V,S) : SF)) R (K, H,(L,S5)) (2)
Now it follows from (1) that
{c}:: S(m,pe) T S(m,pe+1) (3)
L(m,pc) T L(m,pc+1) (4)

SECSAFE-IMM-001-1.5 21

and from (2) we have that

pIK) C K (5)
B(H) C H (6)
BI(V) & L(m,pe (7)
pH(S) © S(m,pe (8)
From (3) and (8) above it follows that
BH(c:S) = pH(e):: pH(S)
= {c}= @H(S) (9)
E {c} = S(m,pc)
C S(m,pc+1)
By (4) and (7) we now obtain
BE(V) T L(m,pe)
C L(m,pc+1) (10)

The Theorem now follows from (5), (6), (9) and (10).
Case (store): By assumption we have

I =store t i
(K, H,(m,pc,V,v::S):: SF) = (K,H,(m,pc+ 1,V]i— v],S) :: SF)

and o
(K,H,L,S) = (m,pc) : store t i (11)

and
BUK, H, (m,pc,V,v = S) : SFY)R (K, H,(L,S)) (12)

From (12) it follows that

pIK) & K (13)
B(H) C H (14)
B(V) € L(m,pe) (15)
(v S) & S(m,po) (16)
Now S(m,pc) = A :: X for some A and X, and (16) implies that
giw) C A (17)
grs) © X (18)
Using (11) we have that
A T L(m,pe+1)(i) (19)
X C S(mpc+1) (20)
Combining (17) and (19) we obtain
Biw) C A o

E L(m,pc+1)(3)

SECSAFE-IMM-001-1.5 22

and combining (18) and (20) it follows that

BH(S)

C X

C S(m,pc+1)

From (11) and the definition of C; we have that

Vo € dom(L(m, pe)) \ {i} : L(m, pe)(x) C L(m, pc+1)(z) (23)

Thus from (21) and (23) we have that

B (Vi — v]) C L(m,pc+1) (24)

The Theorem now follows from (13), (14), (22) and (24).

Case (getfield this): By assumption we have

I = getfield this f

(K,H, (m,pc,V,S) : SF) = (K,H,(m,pc+ 1,V,v:: S) :: SF)

where loc = V[0], o = H(loc) and v = o.fieldValue(f.id). We furthermore
have by assumption that

(K,ﬁ,i, S‘) E (m,pc) : getfield this f (25)
and S
ﬁ(<K7H7<m7pc7‘/75> SF>)R(K7Ha(L7‘S’)) (26)
From (26) it follows that
pY(K) T K (27)
BH) T H (28)
pH(V) C L(m,pe (29)
BH(S) © 8(m,pe) (30)
It follows directly from (25) and (29) that
pH(V) £ L(m,pe)
C L(m,pc+1) (31)
Now assuming that o.class = o it follows from (29) that
pHWVIO]) = B"(loc)
= (Ref o) (32)
T L(m,pc)(0)
Then from (25) and (32) we have that
H(Ref 0)(f) :: S(m, pc) C S(m,pc+1) (33)

Using (28), the fact that o = o.class = H(loc).class and the definition of
B(H)(Ref o) we arrive at

SECSAFE-IMM-001-1.5

B (H (loc))

i

B (o)
B(H)(Ret o) (34)
H(Ref o)

23

Case

and thus
B(o.fieldValue(f.id)) C H(Ref o)(f) (35)

and therefore

BH (v S) B (v) = BH(S)

B(0) = Smope)

ﬁ(o ﬁeldValue(f d)) :: S(m, pc) (36)
A(Ref 0)(f) 5 S(m, pe)

S(m,pc+1)

I |

The Theorem now follows from (27), (28), (31) and (36).
(invokevirtual): By assumption we have

I = invokevirtual m’
(K, H,(m,pc,V,v1 i+ i vy loc: S) i SF) =
(K, H, (m,, 1,V €) :: (m,pe, V vy i1 -+ i vy, 2 loc 2 S) 2 SF)

where n = |m/|, o = H(loc), m, = methodLookup(m'.id, o.class) and
V' =loc :: vy i -+ 2 v,. Furthermore, by assumption we also have
(K,H,L,S) = (m,pc) : invokevirtual m’ (37)
and

BUK, H, (m,pe,V,vy i -+ vy 2 loc =2 S) = SFY) R (K, H, (L, 5)) (38)

From (38) it immediately follows that

pIK) & K (39)

B(H) T H (40)

pI(V) T L(m,pe) (41)

(v, loc: 8) T S(m, pe) (42)

From (37) we know that S(m,pc) = A; == --- = A, = B = X for some

A1, ..., AN, B, X and thus (38) entails that

B (vi) E A (43)

B(locy T B (44)

pr(s) C X (45)

Now, assuming that o.class = o we have that 8% (loc) = (Ref o) and
combining (37) with (44) we obtain the following

{(Ref)} = Ay 2+ 2 Ay E L(my, 1)[0..7] (46)

because m, = methodLookup(m/'.id, o). From this it is clear that

B (V') C L(m,, 1) (47)
and A

B (e) € 8(m.,1) (48)
The Theorem now follows from (39), (40), (47) and (48).

SECSAFE-IMM-001-1.5 24

Case (return): By assumption we have

I =return ¢
(K, H,(m,pc,V,v::S)::(m' ,pd, V' 5 :: SF) =
(K, H,(m,pc +1,V' v :: S :: SF)

It also follows from the assumptions that
(K,H,L,S) = (m,pc) : return ¢ (49)
and
B(K, H, (m,pc,V,v::S) = (m/,pc, V', 8" : SFYR (K, H,(L,S)) (50)

and from this we immediately conclude that

pIK) C K (51)
BH) T H (52)
pH(V) T L(m,pe) (53)
BH(U::S) C S(m,pc) (54)
W) C L(m',pc) (55)
pa(S")y © S(m,pd) (56)

From Lemma 2 it follows that the instruction at m/’.instructionAt(pc’) is
one of either invokevirtual, invokestatic or invokespecial and thus:

L(m/,pd) E L(m/,pc +1) (57)
Combining this with (55) we arrive at

BV C L(m',pe’ +1) (58)

From the above we now have three subcases to consider, depending on the
instruction at m’.instructionAt(pc’). Assume now that

m/.instructionAt(pc’) = invokevirtual m”

then Lemma 2 gives us that

m = methodLookup(m”.id, H (loc).class) (59)

and
S =yl loc i S (60)
where n. = |m/|. From (56) we now know that S(m/,pc’) = Ay =2 -+ = A, =

B :: X and therefore that
H(loc).class = 3% (loc) C B (61)
By assumption we have that

(K,H,L,S) = (m',pc) : invokevirtual m”

SECSAFE-IMM-001-1.5 25

Case

which combined with (59) and (61) gives us that S(m,END,,) =T :: Y
and that .
T:XCSm, pd+1) (62)

but from (56) we have that
p(s)EX (63)
and from (49) we have that S(m, pc) C S(m, END,,) which implies that
B (v S) = pH (v) :: B7(S) C S(m,END,,) (64)
and therefore we know that
gy ET (65)
Combining the above we arrive at

BH (v 8 H(y):: pH(S")
w X

B
T ::
S

(66)

i

(m/, pc’ +1)

The two remaining subcases are similar.

The Theorem now follows from (51), (52), (58) and (66).
(arrayload): By assumption we have

I = arrayload ¢
(K, H,{m,pc,V,i:loc::S):: SF)= (K,H,(m,pc+1,V,v::S):: SF)

where v = H (loc).values(i) and H (loc).elementType = 7. It also follows
from the assumptions that

(K,I:I,Ii,g) E (m,pc) : arrayload ¢ (67)
and o
B(K,H,(m,pc,V,i:loc::S)y: SFYR (K,H,(L,S)) (68)
and from this we immediately conclude that
pHY(K) C K (69)
BH) T H (70)
pH(V) £ L(m,pe) (71)
B (i loc::S) T S(m,pe) (72)
Now it follows from (67) and (71) that
- .
pE(V) E l:(m,pc) (73)
C L(m,pc+1)

From (67) we know that S(m,pc) = A :: B :: X for some A, B and X;
now (72) implies that

piGE) & A (74)
g8 (locy T B (75)
prS) £ X (76)

SECSAFE-IMM-001-1.5 26

Since 3 (loc) = (Ref (array 7)), eq. (75) implies (Ref (array 7)) € B
and thus from (67) we deduce that

H(Ref (array 7)) :: X C S(m,pc+1) (77)
Furthermore we have that

BH (v) BH(H (loc).values(i))

C O(H)Ref (array 7))
C H(Ref (array 7))
Finally from (76), (78) and (67) we have that
B s) = B7() = 67(S)
C H(Ref (array 7)) = X (79)
C S(m,pc+1)
The Theorem new follows from (69), (70), (73) and (79).
The remaining cases are similar.]

SECSAFE-IMM-001-1.5 27

